Pneumonia Classification from X-ray Images Using Residual Neural Network
DOI:
https://doi.org/10.34818/INDOJC.2020.5.2.454Abstract
Pneumonia is a virus, bacterium, and fungi infection disease which causes alveoli swelling and gets worse easily if it is not taken care of immediately. There are symptoms that can be recognized through x-ray images, for example the appearance of white mist in the lungs. A pneumonia classification system has already developed, but it still produced low accuracy. In this research we develop classification system by increasing the depth of CNN architecture using Residual Neural Network to improve accuracy from previous research. The dataset contains 2 classes which are pneumonia and normal, and trained to produce the best learning strategy with various scenarios. The model trained using data train that has been oversampling. The best scenario is achieved by ResNet152 architecture using dropout 0.5. This scenario achieved a result of 0.88 precision, 0.95 recall, 0.92 f1-score, and 0.89 of accuracy. The classification model on this research produces higher accuracy compared to the research of Enes Ayan, et.al. in 2019 which produced 0.87.
Downloads
References
World Health Organization, Pneumonia Factsheets, 2019.
Zar, Heather & Andronikou, Savvas & Nicol, Mark, “Advances in the diagnosis of pneumonia in childrenâ€, in BMJ Clinical Research, 2017
Muder, Robert & Aghababian, Richard & Loeb, Mark & Solot, Jerald & Higbee, Martin, “Nursing home-acquired pneumonia: An emergency department treatment algorithm’, in Current Medical Research and Opinion, 2004
Waterer, Grant & Kessler, Lori & Wunderink, Richard, “Delayed Administration of Antibiotics and Atypical Presentation in Community-Acquired Pneumoniaâ€, in Chest, 2006
Al-Hadidi, M. R. A., Dorgham, O., & Razouq, R. S., “Pneumonia Identification Using Self Organizing Map Algorithmâ€, in ARPN Journal, 2016
Abiyev, R. H., & Ma’aitah, M. K. S., “Deep Convolutional Neural Networks for Chest Diseases Detectionâ€, in Journal of Healthcare Engineering, 2018
E. Ayan and H. M. Ãœnver, "Diagnosis of Pneumonia from Chest X-Ray Images Using Deep Learning", in Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), 2019
He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing; Sun, Jian, "Deep Residual Learning for Image Recognition" in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015
Ren, F., Cao, P., Li, W., Zhao, D., and Zaiane, O, “Ensemble based adaptive over-sampling merhod for imbalanced data learning in computer aided detection of Microaneurysmâ€, in Computerized Medical Imaging and Graphichs : The Official Journal of the Computerized Medical Imaging Society, 2016.
Jian, C., Gao, J., and Ao, Y, “A new sampling method for classifying imbalanced data based on SVM ensembleâ€, in Neurocomputing, 2016.
Rajesh. N. and Ravindra, D, “Classification of imbalanced ECG beats using re-sampling techniques and AdaBoost ensemble classifierâ€, in Biomedical Signal Processing and Control, 2018.
Rodriguez. J., Aritz. P, and Lozano. J., “Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimationâ€, in EEE Transactions on Pattern Analysis and Machine Intelligence, 2010
S. J. Lee, G. Koo, H. Choi and S. W. Kim, "Transfer learning of a deep convolutional neural network for localizing handwritten slab identification numbers," in Fifteenth IAPR International Conference on Machine Vision Applications (MVA), 2017
Russakovsky, Olga & Deng, Jia & Su, Hao & Krause, Jonathan & Satheesh, Sanjeev & Ma, Sean & Huang, Zhiheng & Karpathy, Andrej & Khosla, Aditya & Bernstein, Michael & Berg, Alexander & Li, Fei Fei, “ImageNet Large Scale Visual Recognition Challengeâ€, in International Journal of Computer Vision, 2014
Powers, David M W., "Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation" in Journal of Machine Learning Technologies, 2011
Downloads
Published
How to Cite
Issue
Section
License
- Manuscript submitted to IndoJC has to be an original work of the author(s), contains no element of plagiarism, and has never been published or is not being considered for publication in other journals.Â
- Copyright on any article is retained by the author(s). Regarding copyright transfers please see below.
- Authors grant IndoJC a license to publish the article and identify itself as the original publisher.
- Authors grant IndoJC commercial rights to produce hardcopy volumes of the journal for sale to libraries and individuals.
- Authors grant any third party the right to use the article freely as long as its original authors and citation details are identified.
- The article and any associated published material is distributed under the Creative Commons Attribution 4.0License