Pengenalan Huruf Isyarat Tangan Menggunakan Ekstraksi Ciri Local Binary Pattern
DOI:
https://doi.org/10.21108/INDOJC.2018.3.1.215Abstract
Pada penelitian ini dibangun sistem pengenalan huruf isyarat tangan menggunakan metode ekstraksi ciri Local Binary Patterns (LBP). Metode LBP memiliki kehandalan dalam melakukan analisis tekstur, mengatasi penskalaan dan citra yang kabur. Untuk algoritma klasifikasi, digunakan metode k-Nearest Neighbour (KNN) dan Support Vector Machine (SVM). Parameter LBP terbaik didapatkan untuk nilai R=10 dan P=16 menggunakan SVM dengan kernel Gaussian. Performansi terbaik dalam penelitian ini didapatkan untuk nilai F1-Score 99,84%.
Downloads
References
Pietik̈ainen, T. M. (2004). TEXTURE ANALYSIS WITH LOCAL BINARY PATTERNS. Oulu.
Youdong Ding, H. P. (2011). Recognition of Hand-Gestures Using Improved Local Binary Pattern. Multimedia Technology (ICMT), 2011 International Conference on, 3171-3174.
Bolandraftar, S. B. (2013). Application of K-Nearest Neighbor (KNN) Approach for Predicting Economic Events: Theoretical Background. Journal of Engineering Research and Applications, 605--610.
Jerry J. Tula, S. (2015, September 16). Pelayanan Penyandang Disabilitas Dalam Menggunakan Berbagai Sarana Aksebilitas. Diambil kembali dari Direktorat Jenderal Rehabilitasi Sosial: https://rehsos.kemsos.go.id/modules.php?name=News&file=article&sid=1890
D.K. Vishwakarma, P. K. (2016). A Framework for Recognition of Hand Gesture in Static Postures. International Conference on Computing, Communication and Automation (ICCCA2016).
Mahmood Jasim, M. H. (2015). Sign Language Interpretation using Linear Discriminant Analysis and Local Binary Patterns. Informatics, Electronics & Vision (ICIEV)}, year={2015}.
Nitesh S. Soni, P. D. (2015). Online Hand Gesture Recognition & Classification for Deaf Dumb. Inventive Computation Technologies (ICICT).
Xu-hui ZHANG, J.-j. W.-l. (2016). Improvement of Dynamic Hand Gesture Recognition Based on HMM Algorithm. Information System and Artificial Intelligence (ISAI).
Timo Ojala, M. P. (2002). Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence .
Olivier Chapelle, P. H. (1999). Support Vector Machines for Histogram-Based Image Classification. IEEE Transactions on Neural Networks.
Ratna Astuti Nugrahaeni, K. M. (2016). Comparative Analysis of Machine Learning KNN, SVM, and Random Forests Algorithm for Facial Expression Classification. International Seminar on Application for Technology of Information and Communication.
Chih-Wei Hsu, C.-C. C.-J. (2013). A Practical Guide to Support Vector Classification.
Idicula, D. M. (2014). Recognition of Hand Gestures of English Alphabets using HOG Method. International Conference on Data Science & Engineering (ICDSE).
Downloads
Published
How to Cite
Issue
Section
License
- Manuscript submitted to IndoJC has to be an original work of the author(s), contains no element of plagiarism, and has never been published or is not being considered for publication in other journals.Â
- Copyright on any article is retained by the author(s). Regarding copyright transfers please see below.
- Authors grant IndoJC a license to publish the article and identify itself as the original publisher.
- Authors grant IndoJC commercial rights to produce hardcopy volumes of the journal for sale to libraries and individuals.
- Authors grant any third party the right to use the article freely as long as its original authors and citation details are identified.
- The article and any associated published material is distributed under the Creative Commons Attribution 4.0License