Pengenalan Angka Tulisan Tangan Menggunakan Diagonal Feature Extraction dan Artificial Neural Network Multilayer Perceptron
DOI:
https://doi.org/10.21108/INDOJC.2018.3.1.214Abstract
Pada penelitian ini dibangun sistem pengenalan angka tulisan tangan menggunakan metode ekstraksi ciri diagonal dan Artificial Neural Network Multilayer Perceptron. Pada ekstraksi ciri diagonal, citra dibagi menjadi beberapa area yang sama besar. Pada tiap area dihitung rata-rata nilai piksel pada setiap diagonalnya kemudian dirata-ratakan untuk mendapatkan nilai ciri pada area tersebut. Ciri diagonal dikombinasikan dengan nilai rata-rata horizontal dan vertikal pada matriks area tersebut untuk memperkuat informasi pada citra. Metode ini mencapai akurasi sebesar 92.80% pada tahap pengujian menggunakan 1000 dataset C1 dan 92.60% pada tahap pengujian menggunakan 1000 dataset MNIST. Kombinasi fitur diagonal dan rata-rata horizontal menghasilkan akurasi tertinggi dalam mengenali angka tulisan tangan.
Downloads
References
Gonzalez, R. C., Woods, R. W. (2002). Digital Image Processing. Education. https://doi.org/10.1049/ep.1978.0474
Jindal, A., Dhir, R., & Rani, R. (2012). Diagonal Features and SVM Classifier for Handwritten Gurumukhi Character Recognition. International Journal of Advanced Research in Computer Science and Software Engineering, 2(5), 505–508.
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2323. https://doi.org/10.1109/5.726791
Pradeep, J., Srinivasan, E., & Himavathi, S. (2010). Diagonal Feature Extraction Based Handwritten Character System Using Neural Network. International Journal of Computer Applications, 8(9), 17–22. https://doi.org/10.5120/1236-1693
Rajashekararadhya, S. V., & Ranjan, P. V. (2009). Zone based Feature Extraction Algorithm for Handwritten Numeral Recognition of Kannada Script, (March), 6–7.
Singh, G., & Sachan, M. (2015). Multi-layer perceptron (MLP) neural network technique for offline handwritten Gurmukhi character recognition. 2014 IEEE International Conference on Computational Intelligence and Computing Research, IEEE ICCIC 2014, 1–5. https://doi.org/10.1109/ICCIC.2014.7238334
Stehman, S. V. (1997). Selecting and interpreting measures of thematic classification accuracy. Remote Sensing of Environment, 62(1), 77–89. https://doi.org/10.1016/S0034-4257(97)00083-7
Downloads
Published
How to Cite
Issue
Section
License
- Manuscript submitted to IndoJC has to be an original work of the author(s), contains no element of plagiarism, and has never been published or is not being considered for publication in other journals.Â
- Copyright on any article is retained by the author(s). Regarding copyright transfers please see below.
- Authors grant IndoJC a license to publish the article and identify itself as the original publisher.
- Authors grant IndoJC commercial rights to produce hardcopy volumes of the journal for sale to libraries and individuals.
- Authors grant any third party the right to use the article freely as long as its original authors and citation details are identified.
- The article and any associated published material is distributed under the Creative Commons Attribution 4.0License