Forecasting Number of New Cases Daily COVID-19 in Central Java Province Using Exponential Smoothing Holt-Winters

Authors

DOI:

https://doi.org/10.34818/INDOJC.2021.6.2.565

Keywords:

Additive, COVID-19, Forecasting, Holt-Winters, Seasonal

Abstract

There is hard to mention how long the COVID-19 pandemic will discontinue. There are some factors, including the public’s efforts to slow spread and researchers’ work to observe more about this outbreak. From the beginning of the health crisis, particularly following the announcement of the first positive case In Indonesia due to the COVID-19 on March 2, 2020. Afterwards, the number of daily cases increase simultaneously in other regions in Indonesia until today. Due to the fact that the significant mobility of the people, Central Java has contributed the 3rd rank of potential number of COVID-19 positive cases in Indonesia. This study aims to forecast the number of COVID-19 daily new cases in Central Java to assist the government in preparing the necessary resources and controlling the spread of the COVID-19 virus in Central Java Province. We proposed Exponential Smoothing Holt-Winters with the Additive model with seasonal addition considering trend and seasonal factors. The dataset during March 14 to April 17, 2021, revealed fluctuation of trend and seasonal patterns. Our simulation studies indicate that Exponential Smoothing Holt-Winters provides sharp and well performance for forecasting daily new cases of COVID-19 in Central Java province with MAPE less than 10%.

Downloads

Download data is not yet available.

References

[1] W. H. Organization, “Materi Komunikasi Risiko COVID-19 untuk Fasilitas Pelayanan Kesehatan,” 2 March 2020. [Online]. Available: https://www.who.int/docs/default-source/searo/indonesia/covid19/risk-communication-for-healthcare-facility.pdf?sfvrsn=9207787a_2. [Accessed 9 June 2021].
[2] A. Almuttaqi, “Kekacauan Respons terhadap COVID-19 di Indonesia,” THC INSIGHTS, pp. 1-7, 23 March 2021.
[3] H. Wiguna, Y. Nugraha, F. R. R, A. Andika, J. I. Kanggrawan and A. L. Suherman, “Kebijakan Berbasis Data: Analisis dan Prediksi Penyebaran COVID-19 di Jakarta dengan Metode Autoregressive Integrated Moving Average(ARIMA),” Jurnal Sistem Cerdas, vol. 03, no. 02 02, pp. 74-83, 2020.
[4] T. Safitri, N. Dwidayati dan S. , “PERBANDINGAN PERAMALAN MENGGUNAKAN METODE EXPONENTIAL SMOOTHING HOLT-WINTERS DAN ARIMA,” Journal of Mathematics, vol. 6, no. 1, pp. 48-58, 2017.
[5] A. A. Anwary, PREDIKSI KURS RUPIAH TERHADAP DOLLAR AMERIKA MENGGUNAKAN METODE FUZZY TIME SERIES, 2011.
[6] P. J. Kristianti, PENERAPAN METODE HOLT-WINTERS UNTUK PERAMALAN TINGKAT INFLASI DI INDONESIA, 2020.
[7] G. Pongdatu , E. Abinowi dan W. , “PERAMALAN TRANSAKSI PENJUALAN DENGAN METODE HOLT-WINTER’S EXPONENTIAL SMOOTHING,” Jurnal Ilmiah Teknologi Informasi Terapan, vol. 6, no. 3, pp. 228-233, 2020.
[8] N. Parwati, PRAKIRAN JUMLAH PENUMPANG MENGGUNAKAN HOLT-WINTER’S EXPONENTIAL SMOOTHING, 2020.
[9] M. A. Maricar, “Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ,” Jurnal Sistem dan Informatika, vol. 13, no. 2, pp. 36-45, 2019.
[10] H. Tannady, R. Mulyadi dan R. Cahyadi, “PENENTUAN JENIS INVESTASI DENGAN ANALISA EKONOMI TEKNIK DAN FORECASTING,” Jurnal Ilmiah Teknik Industri, vol. 13, no. 2, pp. 134-140, 2014.
[11] “Anomaly,” 1 December 2015. [Online]. Available: https://anomaly.io/seasonal-trend-decomposition-in-r/index.html. [Accessed 9 June 2021].

Downloads

Published

2021-09-28

How to Cite

Irandi, D. F., Rohmawati, A. A., & Gunawan, P. H. (2021). Forecasting Number of New Cases Daily COVID-19 in Central Java Province Using Exponential Smoothing Holt-Winters. Indonesian Journal on Computing (Indo-JC), 6(2), 23–32. https://doi.org/10.34818/INDOJC.2021.6.2.565

Issue

Section

Computer Science

Most read articles by the same author(s)

> >>