Model GARCH dengan Pendekatan Conditional Maximum Likelihood untuk Prediksi Harga Saham
DOI:
https://doi.org/10.21108/INDOJC.2018.3.2.223Abstract
Jual beli saham merupakan salah satu bentuk investasi yang menjanjikan para investor, investasi berkaitan dengan return atau keuntungan yang didapatkan oleh suatu investor atas suatu investasi yang dilakukan terhadap saham tertentu. Untuk mendapatkan nilai return pada beberapa periode kedepan dapat dilakukan prediksi, pada dasarnya prediksi dapat dilakukan dengan menggunakan beberapa metode, namun dengan menggunakan model time series diharapkan menghasilkan prediksi yang baik karna karakteristik dari data saham merupakan data time series yang bergerak kontinu terhadap waktu. Pada penelitian ini digunakan model time series Autoregressive (AR) dengan pendekatan Conditional Maximum Likelihood untuk memprediksi nilai return serta dapat melihat pergerakan harga saham. Nilai parameter yang penting pada model Autoregressive orde 1 adalah . Hasil penaksiran parameter dengan Conditional Maximum Likelihood digunakan untuk memperoleh nilai hasil prediksi. Berdasarkan hasil analisis, model Autoregressive dengan pendekatan Conditional Maximum Likelihood adalah model yang baik untuk memprediksi return dan harga saham NASDAQ dengan RMSE sebesar 0,0002578. Berdasarkan hasil prediksi model AR(1), maka para investor dapat membuat strategi untuk berinvestasi pada indek saham NASDAQ agar dapat menghasilkan keuntungan.
Downloads
References
Capinski, Marek, and Tomasz Zastawniak. "Mathematics for finance." An Introduction (2003): 118-124.
Enke, David, and Suraphan Thawornwong. "The use of data mining and neural networks for forecasting stock market returns." Expert Systems with applications 29.4 (2005): 927-940.
Oztekin, Asil, et al. "A data analytic approach to forecasting daily stock returns in an emerging market." European Journal of Operational Research 253.3 (2016): 697-710.
Valipour, Mohammad, Mohammad Ebrahim Banihabib, and Seyyed Mahmood Reza Behbahani. "Parameters estimate of Autoregressive moving average and Autoregressive integrated moving average models and compare their ability for inflow forecasting." J Math Stat 8.3 (2012): 330-338.
Cryer, Jonathan D., and Natalie Kellet. Time series analysis. Vol. 101. Boston: Duxbury Press, 1986.
Brooks, Chris. Introductory econometrics for finance. Cambridge university press, 2014.
Downloads
Published
How to Cite
Issue
Section
License
- Manuscript submitted to IndoJC has to be an original work of the author(s), contains no element of plagiarism, and has never been published or is not being considered for publication in other journals.Â
- Copyright on any article is retained by the author(s). Regarding copyright transfers please see below.
- Authors grant IndoJC a license to publish the article and identify itself as the original publisher.
- Authors grant IndoJC commercial rights to produce hardcopy volumes of the journal for sale to libraries and individuals.
- Authors grant any third party the right to use the article freely as long as its original authors and citation details are identified.
- The article and any associated published material is distributed under the Creative Commons Attribution 4.0License