PREDIKSI CRASH SAHAM MENGGUNAKAN LOG PERIODIC POWER LAW DENGAN NONLINEAR OPTIMIZATION (STUDI KASUS: PASAR SAHAM INDONESIA)
DOI:
https://doi.org/10.21108/INDOJC.2016.1.1.10Abstract
Pergerakan indeks harga saham menjadi tolak ukur para investor untuk membuat keputusan yang akan diambil seperti menjual, mempertahankan, atau membeli saham tersebut. Akan tetapi kondisi harga saham yang tidak menentu atau naik turun, mengakibatkan pasar keuangan rentan terhadap crash harga saham. Pada tugas akhir ini, digunakan model Log Periodic Power Law dengan Nonlinear Optimization untuk memprediksi crash terhadap harga saham. Nonlinear Optimization terdapat dua tahap yaitu metode Tabu Search dan algoritma Levenberg-Marquardt kuadrat terkecil nonlinier. Metode Tabu Search untuk mendapatkan tebakan awal dari parameter model LPPL, dan algoritma Levenberg-Marquardt kuadrat terkecil nonlinier untuk mendapatkan nilai parameter dari model LPPL. Hasil prediksi crash saham dilihat dari distribusi perkiraan waktu krisis dengan peluang paling besar. Berdasarkan informasi dari data IHSG, krisis terjadi pada bulan Oktober 2008. Hasil prediksi menggunakan model LPPL dengan Nonlinear Optimization menunjukkan waktu crash harga saham mendekati nilai pada tanggal 23 Januari 2008. Nilai harapan dengan probabilitas waktu paling besar terjadi pada tanggal 31 Januari 2008.Downloads
References
Brée, D.S. and Joseph, N.L., 2013. Testing for financial crashes using the Log Periodic Power Law model. International review of financial analysis, 30, pp.287-297. [Crossref]
Pele, D.T. and Mazurencu-Marinescu, M., 2012. Modelling stock market crashes: the case of Bucharest Stock Exchange. Procedia-Social and Behavioral Sciences, 58, pp.533-542. [Crossref]
Pele, D.T., 2012. An LPPL algorithm for estimating the critical time of a stock market bubble. Journal of Social and Economic Statistics, 1(2), pp.14-22.
Dumskis, V. and Sakalauskas, L., 2012. The mathematical definition of the bubbles and crashes.
Manurung, A.H., Bubbles Prices: money market, stock and Properti.
Noviani, E. and Fatmawati, B.P., 2015. PENYELESAIAN TRAVELLING SALESMAN PROBLEM DENGAN METODE TABU SEARCH. BIMASTER, 4(01).
Alain Hertz, Eric Taillard, dkk. A TUTORIAL ON TABU SEARCH. EPFL, Département de Mathématiques, MA-Ecublens, CH-1015 Lausanne.
Lusia Krismiyati, B., 2009. METODE LEVENBERGâ€MARQUARDT UNTUK MASALAH KUADRAT TERKECIL NONLINEAR. In Seminar Nasional Matematika dan Pendidikan Matematika 2009. Jurusan Pendidikan Matematika FMIPA UNY.
Gavin, H., 2011. The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems. Department of Civil and Environmental Engineering, Duke University, pp.1-15.
Palshikar, G., 2009, June. Simple algorithms for peak detection in time-series. In Proc. 1st Int. Conf. Advanced Data Analysis, Business Analytics and Intelligence.
Downloads
Published
How to Cite
Issue
Section
License
- Manuscript submitted to IndoJC has to be an original work of the author(s), contains no element of plagiarism, and has never been published or is not being considered for publication in other journals.Â
- Copyright on any article is retained by the author(s). Regarding copyright transfers please see below.
- Authors grant IndoJC a license to publish the article and identify itself as the original publisher.
- Authors grant IndoJC commercial rights to produce hardcopy volumes of the journal for sale to libraries and individuals.
- Authors grant any third party the right to use the article freely as long as its original authors and citation details are identified.
- The article and any associated published material is distributed under the Creative Commons Attribution 4.0License