Music Recommender System Using K-Nearest Neighbor and Particle Swarm Optimization

Authors

  • Randika Dwi Maulana Rasyid Telkom University
  • ZK Abdurahman Baizal Computational Science, Faculty of Informatics, Telkom University

DOI:

https://doi.org/10.34818/INDOJC.2022.7.2.649

Keywords:

Recommender System, K-Nearest Neighbor, Particle Swarm Optimization

Abstract

In this day, users can listen to music anytime digitally and access them through the already available applications. A music recommender system is needed to help users choose music according to their interests and find music to listen to. K-Nearest Neighbor (KNN) is a popular method used in Collaborative Filtering (CF). In many studies, CF with the KNN method has been widely used, but it does not provide good performance. Thus, in this study, we use KNN, which will be optimized using Particle Swarm Optimization (PSO), which can improve the performance of the results obtained against the method used. System testing is done by comparing the performance of the KNN algorithm with the optimization results of KNN-PSO with several variables being observed, including the Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) values. The results of these recommender will predict the rating value where the KNN method gives MSE 4.48 and RMSE 2.54 while the KNN-PSO method gives MSE 1.70 and RMSE 1.30.

Downloads

Download data is not yet available.

References

J. H. Su, C. Y. Chin, Y. W. Liao, H. C. Yang, V. S. Tseng, and S. Y. Hsieh, “A Personalized Music Recommender System Using User Contents, Music Contents and Preference Ratings,†Vietnam Journal of Computer Science, vol. 7, no. 1, pp. 77–92, Feb. 2020, doi: 10.1142/S2196888820500049.

A. Gatzioura, J. Vinagre, A. M. Jorge, and M. Sanchez-Marre, “A Hybrid Recommender System for Improving Automatic Playlist Continuation,†IEEE Transactions on Knowledge and Data Engineering, vol. 33, no. 5, pp. 1819–1830, May 2021, doi: 10.1109/TKDE.2019.2952099.

Z. K. A. Baizal,., D. H. Widyantoro, & N. U. Maulidevi, “Computational model for generating interactions in conversational recommender system based on product functional requirementsâ€. Data & Knowledge Engineering, 128, 101813. 2020, doi: 10.1016/j.datak.2020.101813

Z. A. Baizal,., D. H. Widyantoro, & N. U Maulidevi, “Design of knowledge for conversational recommender system based on product functional requirementsâ€. In 2016 international conference on data and software engineering (ICoDSE) (pp. 1-6). IEEE, October 2016

S. Airen and J. Agrawal, “Movie Recommender System Using K-Nearest Neighbors Variants,†National Academy Science Letters, vol. 45, no. 1, pp. 75–82, Feb. 2022, doi: 10.1007/s40009-021-01051-0.

R. Katarya and O. P. Verma, “Efficient music recommender system using context graph and particle swarm,†Multimedia Tools and Applications, vol. 77, no. 2, pp. 2673–2687, Jan. 2018, doi: 10.1007/s11042-017-4447-x.

B. Patel, P. Desai, and U. Panchal, “Methods of Recommender System: A Review,†2017.

Y. Afoudi, M. Lazaar, and M. al Achhab, “Collaborative filtering recommender system,†in Advances in Intelligent Systems and Computing, 2019, vol. 915, pp. 332–345. doi: 10.1007/978-3-030-11928-7_30.

I. Yoshua, H. Bunyamin, and S. Si, “Pengimplementasian Sistem Rekomendasi Musik Dengan Metode Collaborative Filtering,†2021.

R. Samuel, R. Natan, Fitria, and U. Syafiqoh, “Penerapan Cosine Similarity dan K-Nearest Neighbor (K-NN) pada Klasifikasi dan Pencarian Buku,†Journal of Big Data Analytic and Artificial Intelligence, Vol. 1, No. 1, 2018.

D. Wang, D. Tan, and L. Liu, “Particle swarm optimization algorithm: an overview,†Soft Computing, vol. 22, no. 2, pp. 387–408, Jan. 2018, doi: 10.1007/s00500-016-2474-6.

J. C. Bansal, “Particle swarm optimization,†in Studies in Computational Intelligence, vol. 779, Springer Verlag, 2019, pp. 11–23. doi: 10.1007/978-3-319-91341-4_2.

T. Bertin-Mahieux, D. P. W. Ellis, B. Whitman, and P. Lamere, “The Million Song Dataset. THE MILLION SONG DATASET,†2011. [Online]. Available: http://code.google.com/p/pyechonest/

W. S. Bhaya, “Review of Data Preprocessing Techniques in Data Mining,†2017.

R. Samuel, R. Natan, Fitria, and U. Syafiqoh, “Penerapan Cosine Similarity dan K-Nearest Neighbor (K-NN) pada Klasifikasi dan Pencarian Buku,†2018.

A. Sateria, I. D. Saputra, and Y. Dharta, “Penggunaan Metode Particle Swarm Optimization (PSO) Pada Optimasi Multirespon Gaya Tekan dan Momen Torsi Penggurdian Material Komposit Glass Fiber Reinforce Polymer (GFRP) Yang Ditumpuk Dengan Material Stainless Steel (SS),†2018.

G. Canbek, T. T. Temizel, S. Sagiroglu, and N. Baykal, Binary Classification Performance Measures/Metrics: A Comprehensive Visualized Roadmap to Gain New Insights. 2017.

T. Silveira, M. Zhang, X. Lin, Y. Liu, and S. Ma, “How good your recommender system is? A survey on evaluations in recommendation,†International Journal of Machine Learning and Cybernetics, vol. 10, no. 5, pp. 813–831, May 2019, doi: 10.1007/s13042-017-0762-9.

Downloads

Published

2022-08-01

How to Cite

Rasyid , R. D. M., & Baizal, Z. A. (2022). Music Recommender System Using K-Nearest Neighbor and Particle Swarm Optimization. Indonesian Journal on Computing (Indo-JC), 7(2), 45–52. https://doi.org/10.34818/INDOJC.2022.7.2.649

Issue

Section

Computer Science