Video Extraction Into PPG Signal To Identify Blood Pressure With XGBoost Method

Authors

  • Adhan Mulya Rahmawan School of Computing, Telkom University
  • Bedy Purnama Telkom University
  • Bayu Erfianto School of Computing, Telkom University

DOI:

https://doi.org/10.34818/INDOJC.2024.9.2.942

Keywords:

XGBoost, PPG, Signal, Blood Pressure

Abstract

Abstract

Downloads

Download data is not yet available.

References

C. &. K. El-Hajj, "A review of machine learning techniques in photoplethysmography for the non-invasive cuff-less measurementof blood pressure," Biomedical Signal Processing and Control, 2020. J. Clerk Maxwell, A Treatise on Electricity and Magnetism,3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68-73.

E. C. H. F. K. Y. T. &. K. M. Abe, "Heart rate monitoring by a pulse sensor embedded game controller.," Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2015.

A. V. S. S. &. D. H. G. Moço, "New insights into the origin of remote PPG signals invisible light and infrared," Scientific Reports, 2018.

S. B. A. &. C. A. Haddad, "Continuous PPG-Based Blood Pressure Monitoring Using Multi-Linear Regression," IEEE Journal of Biomedical and Health Informatics, 2022.

S. B. R. L. X. M. J. &. A. R. M. Sun, "blood pressure estimation using PPG and ECG during physical exercise," Physiological Measurement, 2016.

H. Y. D. B. A. V. N. W. J. W. S. J. Z. P. P. F. G. L. K. &. F. Z. P. Luo, "Smartphone-Based Blood Pressure Measurement Using Transdermal Optical Imaging Technology," Circulation: Cardiovascular Imaging, 2019.

B. &. N. N. S. Mishra, "A Survey on Denoising Techniques of PPG Signal," IEEE International Conference for Innovation in Technology, 2020.

A. M. S. C. J. K. G. R. &. G. D. Bose, "On-Device Signal Quality Guided and Embedded Physiologic Information for High Fidelity Continuous PPG Compression.," IEEE Transactions on Instrumentation and Measurement, 2024.

X. Z. S. S. W. Y. &. C. X. M. Zhan, "Multi-step-ahead traffic speed forecasting using multi-output gradient boosting regression tree," Journal of Intelligent Transportation Systems, 2019.

D. Giavarina, "Understanding Bland Altman analysis," Biochemia Medica, 2015.

JOUR, Y. Liang, M. Elgendi, Z. Chen and R. Ward, "An optimal filter for short photoplethysmogram signals," Scientific Data, 2018.

S. K. S. J. K. V. P. J. A.-Z. F. A. A. K. &. B. F. M. Patel, " Encoding and Tuning of THz Metasurface-Based Refractive Index Sensor With Behavior Prediction Using XGBoost Regressor," IEEE Access, 2022.

H. M. Tun, "Photoplethysmography (PPG) Scheming System Based on Finite Impulse Response (FIR) Filter Design in Biomedical Applications.," International Journal of Electrical and Electronic Engineering & Telecommunications, 2021.

A. d. H. B. Makandar, "Image Enhancement Techniques using Highpass and Lowpass Filters," International Journal of Computer Applications, 2015.

L. F. O. ,. J. N. a. Roger G.T. Mello a, "Digital Butterworth filter for subtracting noise from low magnitude surface electromyogram,"Computer methods and programs in biomedicine, 2007.

S. H. R. &. K. A. Malik, XGBoost: A Deep Dive into Boosting., 2020.

M. S. W. L. R. &. A. A. P. Grewal, Global Positioning Systems, Inertial Navigation, and Integration., John Wiley & Sons, 2007.

R. S.-R. C. G. Joseph D. Ramsey, "Non-Gaussian methods and high-pass filters in the estimation of effective connections," NeuroImage, pp. 986-1006, 2014.

R. W. ,. M. N. ,. M. B. ,. D. G. A. Mohammad Ali Mansournia, "Bland-Altman methods for comparing methods of measurement and response to criticisms," Global epidemiology, p. 100045, 2021.

Z. W. a. A. C. Bovik, "Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures," IEEE signal processing magazine, vol. 26, pp. 98-117, 2009.

T. C. a. R. R. Draxler, "Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature," Geoscientific model development, vol. 7, no. 3, pp. 1247-1250, 2014.

M. J. W. G. J. Davide Chicco, "The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation," PeerJ. Computer science, vol. 7, p. e623, 2021.

R. Timofeev, “Classification and Regression Trees(CART)Theory and Applications,” Dec. 2004

A. Mayr, H. Binder, O. Gefeller, and M. Schmid, “The evolution of boosting algorithms. From machine learning to statistical modelling,” arXiv (Cornell University), vol. 53, no. 6, pp. 419–427, Aug. 2014

A. Tiwari and A. Chaturvedi, “A Multiclass EEG Signal Classification Model using Spatial Feature Extraction and XGBoost Algorithm,” Nov. 2019

Downloads

Published

2024-08-30

How to Cite

Rahmawan, A. M., Purnama, B., & Erfianto, B. (2024). Video Extraction Into PPG Signal To Identify Blood Pressure With XGBoost Method. Indonesian Journal on Computing (Indo-JC), 9(2), 72–81. https://doi.org/10.34818/INDOJC.2024.9.2.942

Issue

Section

Computer Science