Music Recommendation System Using Alternating Least Squares Method
DOI:
https://doi.org/10.34818/INDOJC.2024.9.1.908Keywords:
alternating least squares, collaborative filtering, sparse, recommendation system, musicAbstract
Music is not just entertainment, but it also has a positive impact on psychological well-being. The music landscape is generally dominated by millennials, especially in Indonesia. Music recommendation systems are becoming an important factor in offering songs that match users' preferences. Collaborative Filtering (CF), particularly the Alternating Least Squares (ALS) method, has become a popular solution for data sparsity problems in user-item interactions. Using the Precision@K metric, ALS provides the best results at a 50:50 data split ratio, 0.30225 for the Last FM dataset and 0.19742 for the Taste Profile dataset.
Further analysis shows that ALS is more effective on datasets with balanced data distributions, such as Last FM, than on datasets with noisier characteristics, such as Taste Profile. The main conclusion is that ALS is suitable for use on datasets with balanced data distributions and can provide more optimal recommendations. For further development, handling sparsity data on Taste Profile needs to be improved to improve the performance of the recommendation model. This illustrates the importance of adapting the model to the unique characteristics of each dataset to achieve more accurate music recommendations.
Downloads
References
A. Harismi, "Manfaat Mendengarkan Musik yang Tidak Disangka-Sangka," [Online]. Available:https://www.sehatq.com/artikel/mendengarkan-musik-dan-manfaatnya-bagi-kondisi-emosional.[Accessed 16 May 2023].
Manfaat.co.id, "14 Manfaat Mendengarkan Musik Instrumental bagi Kesehatan," [Online]. Available:https://manfaat.co.id/manfaat-mendengarkan-musik-instrumental. [Accessed 16 May 2023].
W. F. I. Putri, "Tren Mendengarkan Musik di Indonesia Berubah, Streaming Makin Populer," [Online].Available:https://www.medcom.id/hiburan/musik/3NO9XMWk-tren-mendengarkan-musik-di-indonesia-berubah-streaming-makin-populer.[Accessed 16 May 2023].
M. F. Mahardika, "Mengenal Industri Musik dan Produksi Dibaliknya," [Online]. Available:https://www.its.ac.id/news/2021/10/18/mengenal-industri-musik-dan-produksi-dibaliknya/.[Accessed 16 May 2023].
A. Fareed, S. Hassan, S. B. Belhaouari, and Z. Halim, "A collaborative filtering recommendation framework utilizing social networks," Machine Learning with Applications, vol. 14, p. 100495, 2023. DOI: 10.1016/j.mlwa.2023.100495.
Y. Koren, R. Bell, and C. Volinsky, "Matrix Factorization Techniques for Recommender Systems," Computer, vol. 42, no. 8, pp.30–37, 2009. DOI: 10.1109/MC.2009.263.
J. Chen et al., "Efficient and Portable ALS Matrix Factorization for Recommender Systems," in 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2017, pp. 409 –418.DOI: 10.1109/IPDPSW.2017.91.
Last.fm, "Last.fm API," [Online]. Available: https://www.last.fm/api. [Accessed 11 September 2023].
T.Bertin-Mahieux,D.P.W.Ellis,B.Whitman,andP.Lamere,"TheMSD,"in Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR 2011).
C. C. Aggarwal, Recommender Systems: The Textbook, 1st ed. Springer Cham, 2016. DOI: 10.1007/978-3-319-29659-3.
S. Martin, J. I. Sihotang, and B. Jonathan, "Mesin Rekomendasi menggunakan Algoritma Alternating Least Square (ALS) pada Goodreads," Jurnal CoreIT, vol. 6, no. 2, p. 79, 2020. DOI: 10.24014/coreit.v6i2.11578.
S.Goshetal.,"RecommendationSystemforE-commerceUsingAlternatingLeastSquares(ALS)onApacheSpark,"inP.Vasant,I.Zelinka,andG.W.Weber(Eds.),IntelligentComputingandOptimization,SpringerInternationalPublishing,2021,pp.880–893.DOI: 10.1007/978-3-030-68154-8_75.
Z. Zhang, T. Peng, and K. Shen, "Overview of Collaborative Filtering Recommendation Algorithms," IOP Conference Series: Earth and Environmental Science, vol. 440, no. 2, p. 022063, 2020. DOI: 10.1088/1755-1315/440/2/022063.
"Pengelompokan Hasil Pencarian Skripsi Berbahasa Indonesia Menggunakan Metode DBSCAN dengan Pembobotan BM25," Jurnal Teknologi Informasi Dan Ilmu Komputer, vol. 10, no. 4, pp. 781-790, 2023. DOI:10.25126/jtiik.20241046899.
D. Afchar, R. Hennequin, and V. Guigue, "Of Spiky SVDs and Music Recommendation," ACM, New York, NY,USA, 2023, pp.1-10.
Downloads
Published
How to Cite
Issue
Section
License
- Manuscript submitted to IndoJC has to be an original work of the author(s), contains no element of plagiarism, and has never been published or is not being considered for publication in other journals.Â
- Copyright on any article is retained by the author(s). Regarding copyright transfers please see below.
- Authors grant IndoJC a license to publish the article and identify itself as the original publisher.
- Authors grant IndoJC commercial rights to produce hardcopy volumes of the journal for sale to libraries and individuals.
- Authors grant any third party the right to use the article freely as long as its original authors and citation details are identified.
- The article and any associated published material is distributed under the Creative Commons Attribution 4.0License