Study of Machine Learning Algorithm on Phonocardiogram Signals for Detecting of Coronary Artery Disease
DOI:
https://doi.org/10.34818/INDOJC.2020.5.3.536Abstract
Several methods of detecting coronary artery disease (CAD) have been developed, but they are expensive and generally use an invasive catheterization method. This research provides a solution to this problem by developing an inexpensive and non-invasive digital stethoscope for detecting CAD. To prove the effectiveness of this device, twenty-one subjects consisting of 11 CAD patients and 10 healthy people from Hasan Sadikin Hospital Bandung were selected as validation test participants. In addition, auscultation was carried out at four different locations around their chests, such as the aorta, pulmonary, tricuspid, and mitral. Then the phonocardiogram data taken from the stethoscope were analyzed using machine learning. To obtain optimal detection accuracy, several types of kernels such as radial basis function kernel (RBF), polynomial kernel and linear kernel of Support Vector Machine (SVM) have been analyzed. The experimental results show that the linear kernel outperforms compared to others; it provides a detection accuracy around 66%. Followed by RBF is 56% and Polynomial is 46%. In addition, the observation of phonocardiogram signals around the aorta is highly correlated with CAD, giving an average detection accuracy for the kernel of 66%; followed by 44% tricuspid and 43% pulmonary.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
- Manuscript submitted to IndoJC has to be an original work of the author(s), contains no element of plagiarism, and has never been published or is not being considered for publication in other journals.Â
- Copyright on any article is retained by the author(s). Regarding copyright transfers please see below.
- Authors grant IndoJC a license to publish the article and identify itself as the original publisher.
- Authors grant IndoJC commercial rights to produce hardcopy volumes of the journal for sale to libraries and individuals.
- Authors grant any third party the right to use the article freely as long as its original authors and citation details are identified.
- The article and any associated published material is distributed under the Creative Commons Attribution 4.0License