Klasifikasi Kanker Payudara Menggunakan Residual Neural Network
DOI:
https://doi.org/10.34818/INDOJC.2020.5.1.373Abstract
Kanker Payudara menjadi salah satu penyebab kematian yang umum terutama pada kaum wanita. Di Amerika Serikat pada tahun 2015, kanker payudara menjadi jenis kanker yang paling banyak diderita dan menjadi kanker paling mematikan setelah kanker paru-paru. Studi terkait menyatakan bahwa pendeteksi dan penanggulangan secara diri menjadi faktor penting dalam menghadapi kanker payudara. Proses diagnosa kanker payudara secara tradisional memakan waktu yang cukup lama, terlebih lagi para ahli patologi belum 100% yakin atas hasil diagnosa mereka. Oleh karena itu dalampenelitian ini dibuatlah sebuah sistem dengan bantuan komputer yang dapat membantu para dokter untuk mengklasifikasi jenis sel payudara berdasarkan gambar histopatologi. Dalam penelitian ini, diusulkan sebuah metode menggunakan pendekatan deep convolutional neural network menggunakan arsitektur Residual Neural Network (ResNet) untuk pengklasifikasian berdasarkan gambar histopatologi pada dataset BreakHis. Performa terbaik yang dicapai dalam metode ini mencapai tingkat rata-rata akurasi 99,3% pada pengklasifikasian binary, dan tingkat rata-rata akurasi 94,6% pada pengklasifikasian multi-class yang mana hampir setara dengan kondisi state-ofthe-art saat penelitian ini ditulis.
Downloads
References
“USCS Data Visualizations.†[Online]. Available: https://gis.cdc.gov/Cancer/USCS/DataViz.html. [Accessed: 19-Mar-2019].
et all Ellis IO, “Pathology and Genetic of Tumours of the Breast and Female Genital Organs, WHO Classification of Tumours,†Invasive breast carcinoma, pp. 18–19, 23–43, 2003.
Kunihiko Fukushima, “Computerized Nuclear Morphometry as an Objective Method for Characterizing Human Cancer Cell Populations,†Cancer Res., vol. 38, no. 12, pp. 4688–4697, 1978.
F. A. Spanhol, L. S. Oliveira, C. Petitjean, and L. Heutte, “A Dataset for Breast Cancer Histopathological Image Classification,†IEEE Trans. Biomed. Eng., vol. 63, no. 7, pp. 1455–1462, 2016.
L. D. Jackel et al., “Backpropagation Applied to Handwritten Zip Code Recognition,†Neural Computation, vol. 1, no. 4. pp. 541–551, 1989.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,†2015.
F. Narvaez, G. DÃaz, and E. Romero, “Multi-view information fusion for automatic BI-RADS description of mammographic masses,†Med. Imaging 2011 Comput. Diagnosis, vol. 7963, no. 1, p. 79630A, 2011.
F. Moayedi, Z. Azimifar, R. Boostani, and S. Katebi, “Contourlet-based mammography mass classification using the SVM family,†Comput. Biol. Med., vol. 40, no. 4, pp. 373–383, 2010.
Kunihiko Fukushima, “Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position Kunihiko,†Nature, vol. 237, no. 5349, pp. 55–56, 1980.
P. H. YANN LECUN, LEON BOTTOU, YOSHUA BENGIO, “Gradient-Based Learning Applied to Document Recognition,†Biochem. Biophys. Res. Commun., vol. 330, no. 4, pp. 1299–305, 1998.
G. E. H. Alex Krizhevsky, Ilya Sutskever, “ImageNet Classification with Deep Convolutional Neural Networks,†2018 9th IFIP Int. Conf. New Technol. Mobil. Secur. NTMS 2018 - Proc., vol. 2018-Janua, no. February, pp. 1–5, 2018.
F. A. Spanhol, L. S. Oliveira, C. Petitjean, and L. Heutte, “Breast cancer histopathological image classification using Convolutional Neural Networks,†Proc. Int. Jt. Conf. Neural Networks, vol. 2016-Octob, pp. 2560–2567, 2016.
Z. Han, B. Wei, Y. Zheng, Y. Yin, K. Li, and S. Li, “Breast Cancer Multi-classification from Histopathological Images with Structured Deep Learning Model,†Sci. Rep., vol. 7, no. 1, p. 4172, Dec. 2017.
M. Nawaz, A. A., and T. Hassan, “Multi-Class Breast Cancer Classification using Deep Learning Convolutional Neural Network,†Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 6, pp. 316–322, 2018.
L. N. Smith, “Cyclical learning rates for training neural networks,†Proc. - 2017 IEEE Winter Conf. Appl. Comput. Vision, WACV 2017, no. April, pp. 464–472, 2017.
G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q. Weinberger, “Snapshot Ensembles: Train 1, get M for free,†pp. 1–14, 2017.
K. Dimitropoulos, P. Barmpoutis, C. Zioga, A. Kamas, K. Patsiaoura, and N. Grammalidis, “Grading of invasive breast carcinoma through Grassmannian VLAD encoding,†PLoS One, vol. 12, no. 9, pp. 1–18, 2017.
“LeCun et al. 1995. Comparison of learning algorithms for handwritten digit.â€
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
- Manuscript submitted to IndoJC has to be an original work of the author(s), contains no element of plagiarism, and has never been published or is not being considered for publication in other journals.Â
- Copyright on any article is retained by the author(s). Regarding copyright transfers please see below.
- Authors grant IndoJC a license to publish the article and identify itself as the original publisher.
- Authors grant IndoJC commercial rights to produce hardcopy volumes of the journal for sale to libraries and individuals.
- Authors grant any third party the right to use the article freely as long as its original authors and citation details are identified.
- The article and any associated published material is distributed under the Creative Commons Attribution 4.0License