Numerical Simulation of Soliton Collision by using 1D Boussinesq Model
DOI:
https://doi.org/10.34818/INDOJC.2019.4.2.335Abstract
Soliton or solitary wave is a physical phenomenon in which a wave propagates without changing of form in a dispersive media. It is a condition when effects of nonlinearity is balanced with effects of dispersion. Therefore solitary wave propagation is a standard test for testing nonlinearity and dispersiveness of a wave model and its numerical implementation. One interesting case of the soliton phenomenon is the soliton collision which is an interaction between two solitary waves facing each other and producing a high impact wave. The phenomenon can be used to study tsunami wave interactions. In this paper we study the phenomenon by using numerical approach. We use a nonlinear dispersive 1D Boussinesq model that is implemented numerically by using Finite Element implementation in a collocated grid. The accuracy of the implementation is test by simulating two test cases of solitary wave, i.e. the propagation of solitary wave againsts analytical soliton solusion of Korteweg-de Vries (KdV) and the collision of two identical solitary waves. Results of simulations are also compared with results of the nonlinear nondispersive Shallow Water Equations (SWE).
Downloads
References
Yuliawati, Lia, Wono Setya Budhi, and Didit Adytia. "Numerical Studying of Soliton in the Korteweg-de Vries (KdV) Equation." Journal of Physics: Conference Series. Vol. 1127. No. 1. IOP Publishing, 2019.
Kivshar, Yuri S., and Govind Agrawal. Optical solitons: from fibers to photonic crystals. Academic press, 2003.
Zaera, Ramon, et al. "Propagation of solitons in a two-dimensional nonlinear square lattice." International Journal of Non-Linear Mechanics 106 (2018): 188-204.
El-Tantawy, S. A., N. A. El-Bedwehy, and W. M. Moslem. "Nonlinear ion-acoustic structures in dusty plasma with superthermal electrons and positrons." Physics of Plasmas 18.5 (2011): 052113.
Miles, John W. "Obliquely interacting solitary waves." Journal of Fluid Mechanics 79.1 (1977): 157-169.
Yuliawati, Lia, et al. "Simulation of obliquely interacting solitary waves with a hard wall by using HAWASSI-VBM and SWASH model." AIP Conference Proceedings. Vol. 1707. No. 1. AIP Publishing, 2016.
Escalante, C., T. Morales de Luna, and M. J. Castro. "Non-hydrostatic pressure shallow flows: GPU implementation using finite volume and finite difference scheme." Applied Mathematics and Computation 338 (2018): 631-659.
Wang, Yue-Yue, et al. "Dynamics of nonlocal and localized spatiotemporal solitons for a partially nonlocal nonlinear Schrödinger equation." Nonlinear Dynamics 92.3 (2018): 1261-1269.
Ermakov, Andrei, and Yury Stepanyants. "Soliton interaction with external forcing within the Korteweg–de Vries equation." Chaos: An Interdisciplinary Journal of Nonlinear Science 29.1 (2019): 013117.
Ablowitz, Mark J., and Douglas E. Baldwin. "Nonlinear shallow ocean-wave soliton interactions on flat beaches." Physical Review E 86.3 (2012): 036305.
Darvishi, M. T., M. Najafi, and A. M. Wazwaz. "Soliton solutions for Boussinesq-like equations with spatio-temporal dispersion." Ocean Engineering 130 (2017): 228-240.
Hassan, Hany N. "Numerical solution of a Boussinesq type equation using Fourier spectral methods." Zeitschrift für Naturforschung A 65.4 (2010): 305-314.
Adytia, D., and E. van Groesen. "Optimized Variational 1D Boussinesq modelling of coastal waves propagating over a slope." Coastal engineering 64 (2012): 139-150.
Lawrence, C., D. Adytia, and E. Van Groesen. "Variational Boussinesq model for strongly nonlinear dispersive waves." Wave motion 76 (2018): 78-102.
Adytia, D., D. Tarwidi, S. A. Kifli, and S. R. Pudjaprasetya. "Staggered grid implementation of 1D Boussinesq model for simulating dispersive wave." In Journal of Physics: Conference Series, vol. 971, no. 1, p. 012020. IOP Publishing, 2018.
Miles, John W. "Hamiltonian formulations for surface waves." Applied Scientific Research 37.1-2 (1981): 103-110.
Adytia, D., Pudjaprasetya, S.R. & Tarwidi, D. “Modeling of wave run-up by using staggered grid scheme implementation in 1D Boussinesq model†Comput Geosci (2019).
Downloads
Published
How to Cite
Issue
Section
License
- Manuscript submitted to IndoJC has to be an original work of the author(s), contains no element of plagiarism, and has never been published or is not being considered for publication in other journals.Â
- Copyright on any article is retained by the author(s). Regarding copyright transfers please see below.
- Authors grant IndoJC a license to publish the article and identify itself as the original publisher.
- Authors grant IndoJC commercial rights to produce hardcopy volumes of the journal for sale to libraries and individuals.
- Authors grant any third party the right to use the article freely as long as its original authors and citation details are identified.
- The article and any associated published material is distributed under the Creative Commons Attribution 4.0License