Pairwise Preference Regression on Movie Recommendation System
DOI:
https://doi.org/10.21108/INDOJC.2019.4.1.255Abstract
Recommendation System is able to help users to choose items, including movies, that match their interests. One of the problems faced by recommendation system is cold-start problem. Cold start problem can be categorized into three types, they are: recommending existed item for new user, recommending new item for existed user, and recommending new item for new user. Pairwise preference regression is a method that directly deals with cold-start problem. This method can suggest a recommendation, not only for users who have no historical rating, but also for those who only have less demographic info. From the experiment result, the best score of Normalized Discounted Cumulative Gain (nDGC) from the system is 0.8484. The standard deviation of rating resulted by the recommendation system is 1.24, the average is 3.82. Consequently, the distribution of recommendation result is around rating 5 to 3. Those results mean that this recommendation system is good to solving cold-start problem in movie recommendation system.Downloads
References
Ricci, Francesco, Lior Rokach, and Bracha Shapira. Introduction to recommender systems handbook. Springer US, 2011.
Adomavicius, Gediminas, and Alexander Tuzhilin. "Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions." Knowledge and Data Engineering, IEEE Transactions on 17.6 (2005): 734-749.
Park, Seung-Taek, and Wei Chu. "Pairwise preference regression for cold-start recommendation." Proceedings of the third ACM conference on Recommender systems. ACM, 2009.
Pazzani, Michael J. "A framework for collaborative, content-based and demographic filtering." Artificial Intelligence Review 13.5-6 (1999): 393-408.
Basilico, Justin, and Thomas Hofmann. "A joint framework for collaborative and content filtering." Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval. ACM, 2004.
Billsus, Daniel, et al. "Adaptive interfaces for ubiquitous web access."Communications of the ACM 45.5 (2002): 34-38.
Järvelin, Kalervo, and Jaana Kekäläinen. "IR evaluation methods for retrieving highly relevant documents." Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval. ACM, 2000.
Downloads
Published
How to Cite
Issue
Section
License
- Manuscript submitted to IndoJC has to be an original work of the author(s), contains no element of plagiarism, and has never been published or is not being considered for publication in other journals.Â
- Copyright on any article is retained by the author(s). Regarding copyright transfers please see below.
- Authors grant IndoJC a license to publish the article and identify itself as the original publisher.
- Authors grant IndoJC commercial rights to produce hardcopy volumes of the journal for sale to libraries and individuals.
- Authors grant any third party the right to use the article freely as long as its original authors and citation details are identified.
- The article and any associated published material is distributed under the Creative Commons Attribution 4.0License