Deteksi Kanker berdasarkan Klasifikasi Data Microarray menggunakan Functional Link Neural Network dengan Seleksi Fitur Genetic Algorithm
DOI:
https://doi.org/10.21108/INDOJC.2017.2.2.173Abstract
Di beberapa tahun terakhir, pemanfaatan teknologi microarray memiliki pengaruh besar dalam menentukan gen informatif yang menyebabkan kanker. Micorarray mampu menentukan ekspresi ribuan gen dan secara simultan memantau proses bilogis yang sedang berlangsung. Dengan melakukan analisa terhadap data micorarray, selanjutnya ekspresi dari ribuan gen yang merepresentasikan suatu jaringan pada manusia, akan diklasifikasikan sebagai jaringan kanker atau bukan. Dalam penulisan penelitian penelitian, penulis meng-implementasikan Functional Link Neural Network dengan fungsi basis Legendre Polynomial untuk klasifikasi data yang akurat dan menggunakan Genetic Algorithm sebagai seleksi fitur untuk mereduksi data berdimensi tinggi yang sering ditemukan pada data microarray. Dengan serangkaian proses yang telah dilakukan, maka diperoleh kinerja tertinggi terhadap klasifikasi data microarray Colon Tumor sebesar 92.3% dan Leukemia sebesar 87.5%. Perbedaan kinerja yang diperoleh disebabkan oleh perbedaan karakteristik masing-masing data.
Downloads
References
O Babatunde, Leisa Armstrong, Jinsong Leng, and Dean Diepeveen. A genetic algorithm-based feature selection. International Journal of Electronics Communication and Computer Engineering, 5(4):889–905, 2014.
Erick Cantu-Paz. Feature subset selection, class separability, and genetic algorithms. In Genetic and Evolutionary Computation– GECCO 2004, pages 959–970. Springer, 2004.
Mukesh Kumar, Sandeep Singh, and Santanu Kumar Rath. Classification of microarray data using functional link neural network. Procedia Computer Science, 57:727–737, 2015.
Il-Seok Oh, Jin-Seon Lee, and Byung-Ro Moon. Hybrid genetic algorithms for feature selection. IEEE Transactions on pattern analysis and machine intelligence, 26(11):1424–1437, 2004.
Deepti Moyi Sahoo and S Chakraverty. Functional link neural network approach to solve structural system identification problems. Neural Computing and Applications, pages 1–12, 2017.
Tan Ching Siang, Ting Wai Soon, Shahreen Kasim, Mohd Saberi Mohamad, Chan Weng Howe, Safaai Deris, Zalmiyah Zakaria, Zuraini Ali Shah, and Zuwairie Ibrahim. A review of cancer classification software for gene expression data. International Journal of Bio-Science and Bio-Technology, 7(4):89–108, 2015.
Rabindra Kumar Singh and M Sivabalakrishnan. Feature selection of gene expression data for cancer classification: a review. Procedia Computer Science, 50:52–57, 2015.
C Devi Arockia Vanitha, D Devaraj, and M Venkatesulu. Gene expression data classification using support vector machine and mutual information-based gene selection. Procedia Computer Science, 47:13–21, 2015.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
- Manuscript submitted to IndoJC has to be an original work of the author(s), contains no element of plagiarism, and has never been published or is not being considered for publication in other journals.Â
- Copyright on any article is retained by the author(s). Regarding copyright transfers please see below.
- Authors grant IndoJC a license to publish the article and identify itself as the original publisher.
- Authors grant IndoJC commercial rights to produce hardcopy volumes of the journal for sale to libraries and individuals.
- Authors grant any third party the right to use the article freely as long as its original authors and citation details are identified.
- The article and any associated published material is distributed under the Creative Commons Attribution 4.0License