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Abstract
We discuss the elementary computational aspects of Tilepaint puzzles, single-player
logic puzzles introduced in 1995 and confirmed NP-complete in 2022. We propose
two elementary search-based algorithms for solving such puzzles: the complete search
technique with a bitmasking approach and the prune-and-search technique with a
backtracking approach and pruning optimization. We show that the asymptotic running
times of these algorithms for solving an m× n Tilepaint instance containing p tiles
are respectively O(2p · p · mn) and O(2p · mn), implying that the latter method is
asymptotically faster by a factor of p. We also discuss tractable and intractable variants
of the puzzles. We show that an m×n Tilepaint instance containing mn tiles of size
1×1 is solvable in polynomial time. In contrast, we show that solving general m×1
and 1× n Tilepaint puzzles remains intractable by reducing such problems from the
subset-sum problem.

Keywords: complete search, complexity, prune-and-search, Tilepaint puzzle, tractable
subproblems, reduction

Abstrak
Kami membahas aspek komputasi elementer dari teka teki Tilepaint, teka teki logika
pemain tunggal yang diperkenalkan pada tahun 1995 dan dikonfirmasi NP-complete
pada tahun 2022. Kami mengusulkan dua algoritma elementer berbasis pencarian
untuk memecahkan teka teki tersebut: teknik pencarian menyeluruh dengan pen-
dekatan bitmasking dan teknik pencarian-dan-pangkas dengan pendekatan runut balik
dan optimasi pemangkasan. Kami menunjukkan bahwa waktu eksekusi asimtotik dari
algoritma-algoritma ini untuk menyelesaikan teka teki Tilepaint m× n yang berisi p
kelompok ubin (tiles) masing-masing adalah O(2p · p ·mn) dan O(2p ·mn), menyi-
ratkan bahwa metode kedua lebih cepat secara asimtotik dengan faktor p. Kami juga
membahas varian teka teki tersebut yang bisa diselesaikan cepat (tractable) dan tidak
(intractable). Kami menunjukkan bahwa bahwa teka teki Tilepaint m×n yang berisi
mn ubin berukuran 1 × 1 dapat diselesaikan dalam waktu polinomial. Sebaliknya,
kami menunjukkan bahwa memecahkan teka teki Tilepaint yang berukuran m×1 dan
1×n secara umum tetap intractable dengan mereduksi masalah tersebut dari masalah
jumlahan subhimpunan (subset-sum problem).

Kata Kunci: kompleksitas, pencarian-dan-pangkas, pencarian menyeluruh, reduksi,
submasalah tractable, teka teki Tilepaint
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I. INTRODUCTION

T ilepaint (タイルペイント) is a logic pencil-and-paper-based puzzle invented by Toshihari
Yamamoto in Japan and popularized by Nikoli, a publisher that specializes in logic puzzles.1

According to Jimmy Goto—then a Nikoli manager—Tilepaint first appeared in issue 53 of Nikoli’s
quarterly Puzzle Communication magazine in 1995 and has been published regularly ever since
[1]. This puzzle considers an m × n grid of cells where the cells are divided into some tiles. A
tile (sometimes referred to as a region) is a collection of orthogonally connected cells separated
by thick lines. Initially, all cells are left blank (uncolored). The player plays the game by ensuring
that each cell in every tile is either colored or uncolored (i.e., we must color all cells in a tile or
leave all of them uncolored). There are constraints indicated by numbers at the top and left of the
grid, specifying the number of cells that must be colored in the corresponding row and column.
The problem is to find any configuration that matches the number of colored cells according to
the constraint described for each row and column (if any).

Solving puzzles is valuable for enhancing computational thinking, mathematics, and problem-
solving skills. Regularly solving puzzles stimulates various cognitive functions, including creativity,
critical thinking, and mathematical thinking, which are fundamental to mathematical proficiency
[2]. Some single-player puzzles have notable connections to important computational and mathe-
matical problems, sparking the scientific community’s interest in exploring these puzzles [3]–[5].
Several one-player puzzles have been confirmed NP-complete, such as (in alphabetical order, the
year in which the puzzle is confirmed NP-complete indicated inside the brackets): Five Cells
(2022) [6], Juosan (2021) [7], Kurotto (2021) [7], Minesweeper (2000) [8], Moon-or-Sun (2022)
[9], Nagareru (2022) [9], Nonogram (1996) [10], Nurimeizu (2022) [9], Path Puzzles (2020) [11],
Sudoku (2003) [12], Suguru (2022) [13], Tatamibari (2020) [14], and Yin-Yang (2021) [15].

Tilepaint puzzles were recently confirmed NP-complete in 2022 by Iwamoto and Ide [6]. The
NP-completeness of the puzzles means a polynomial time algorithm exists to verify whether a
configuration satisfies the puzzle’s rules. Moreover, this implies solving a general instance of
Tilepaint puzzles currently requires an exponential time algorithm unless P = NP. Nevertheless,
as far as we know, there has never been any discussion of further research into the algorithms used
to solve these puzzles. Various methods are proposed to solve NP-complete puzzles, including non-
elementary techniques such as integer programming model [16] and SAT solver [17]–[19]. This
paper discusses two elementary search-based techniques for solving Tilepaint puzzles: a complete
search approach with a bitmasking technique and a prune-and-search approach with a backtracking
method. Previous studies show that elementary search-based methods can be applied for solving
NP-complete puzzles, such as the prune-and-search method for solving Yin-Yang puzzles [20] and
the exhaustive search technique for solving Tatamibari puzzles [21].

Tilepaint puzzles are closely related to two-dimensional discrete tomography problems, which
relate to constructing binary images from a small number of their projections. The application
of discrete tomography problems have been extensively discussed in image processing [22], [23].
Tilepaint puzzles can be extended from these problems by imposing the additional tile rule, namely,
all cells within the same tile must have the same color. Other NP-complete puzzles related to two-
dimensional discrete tomography problems are Nonogram [10] and Path Puzzles [11]. Nevertheless,
it is well-known that the two-dimensional discrete tomography problem is solvable in polynomial
time if the numerical constraints for all rows and columns in the instance are known [24], [25].
Modifying existing rules and introducing additional rules to the formerly tractable two-dimensional
discrete tomography problem transforms this problem into interesting non-trivial NP-complete
puzzles. In the case of the Nonogram puzzle, the NP-hardness arises due to multiple numerical
constraints for each row and column, while for the Path Puzzles, the NP-hardness occurs due to
the Hamiltonicity constraint.

This paper also discusses some tractable and intractable variants of the original Tilepaint puzzles.
Studying originally NP-complete problems’ variations that are tractable is important in theoretical
computer science [26], [27]. This paper shows that an m × n Tilepaint instance containing mn

1An example of a famous puzzle published by Nikoli is Sudoku.
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tiles of size 1 × 1 is solvable in polynomial time if all the numerical constraints are known. In
contrast, this paper also shows that reducing the dimension of a Tilepaint puzzle to m×1 or 1×n
does not necessarily make the puzzle becomes tractable.

We organize the rest of our investigation into the following sections. In Section II, we discuss the
formal definition, data structure representation, and mathematical properties of Tilepaint puzzles.
We outline the NP-completeness of Tilepaint puzzles from the previous paper [6] and briefly
explore a similar problem to the Tilepaint puzzle, i.e., the two-dimensional discrete tomography
problems. We explore some important mathematical observations of the Tilepaint puzzle; specifi-
cally, we discuss a condition where a Tilepaint puzzle does not have a solution. This condition can
be used as a prune condition to optimize the Tilepaint solver. Section III discusses a polynomial
time approach to verify whether a Tilepaint configuration satisfies the puzzle’s rules. We show
that this verification algorithm takes O(mn) time for an m× n Tilepaint configuration with any
number of tiles. Section IV discusses a complete search approach with a bitmasking technique
to solve arbitrary Tilepaint puzzles of size m× n containing p tiles in O(2p · p ·mn) time. The
prune-and-search approach with a backtracking technique and pruning optimization for solving
arbitrary Tilepaint puzzles of size m×n with p tiles in O(2p ·mn) time is discussed in Section V.
We discuss a tractable variant of Tilepaint puzzles, namely an m×n puzzle with mn tiles of size
1×1 in Section VI. Moreover, we also show that a general Tilepaint puzzle of size m×1 or 1×n
remains intractable in Section VII. Section VIII presents the experimental results showcasing the
performance of both solver algorithms in solving Tilepaint puzzles of various sizes. Finally, we
summarize and conclude our investigation in Section IX.

II. PRELIMINARIES

We use one-based indexing for all arrays throughout this paper. For a one-dimensional array
A of size/length n, the notation A[i] denotes the i-th entry of A (1 ≤ i ≤ n) and for a two-
dimensional array B of size m× n (i.e., containing m rows and n columns), the notation B[i][j]
denotes the entry in row i and column j of B where 1 ≤ i ≤ m and 1 ≤ j ≤ n.

A. Formal Definition and Representation of Tilepaint Puzzles

A Tilepaint instance informally is an empty m×n grid grouped into several tiles/regions (orthog-
onally connected cells). The configuration is a collection of tiles that are colored (or blackened) or
uncolored (or left white). However, not all configurations are solutions to an instance—a solution to
an instance is the configuration that satisfies the puzzle’s rules. The following definition formalizes
the description of Tilepaint instances, configurations, and solutions.

Definition 1. An instance of a Tilepaint puzzle (or Tilepaint instance) of size m × n with p
tiles/regions is a rectangular grid of m rows and n columns satisfying the following conditions:

1) a cell (i, j) is an intersection of row i and column j where 1 ≤ i ≤ m and 1 ≤ j ≤ n;
2) there are p tiles T1, T2, . . . , Tp where 1 ≤ p ≤ mn, here a tile Ti is a collection of

orthogonally connected cells;
3) all cells are initially uncolored;
4) there can be a constraint number for each row i, denoted by CRi (a non-negative integer

between 0 and n, inclusive), signifying the number of colored cells in row i, where 1 ≤ i ≤ m;
5) there can be a constraint number for each column j, denoted by CCj (a non-negative integer

between 0 and m, inclusive), signifying the number of colored cells in a column j, where
1 ≤ j ≤ n.

A configuration of a Tilepaint instance is obtained by coloring zero or more cells in the instance.
A solution to a Tilepaint instance is a configuration that satisfies the rules of the Tilepaint puzzle,
namely, all cells in the same tile must be colored or uncolored, and the number of colored cells
in each row and column must comply with the predefined constraint number.

Fridolin et al.
Elementary Search-based Algorithms for Solving Tilepaint Puzzles 38



3

2

2

4

3 4 3

(a) A Tilepaint instance (initial configuration).
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(b) An instance in Fig. 1a with numbered tiles.
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(c) An example of a Tilepaint solution to the
instance in Fig. 1b.

(1, 0) (2, 0) (3, 0) (3, 0)
(1, 0) (2, 0) (2, 0) (4, 0)
(1, 0) (5, 0) (6, 0) (6, 0)
(7, 0) (7, 0) (8, 0) (8, 0)

(d) An array representation of the Tilepaint
instance in Fig. 1b.

(1, 0) (2, 1) (3, 1) (3, 1)
(1, 0) (2, 1) (2, 1) (4, 0)
(1, 0) (5, 0) (6, 1) (6, 1)
(7, 1) (7, 1) (8, 1) (8, 1)

(e) An array representation of Tilepaint
solution in Fig. 1c.

Fig. 1: Tilepaint instance and solution as well as their array representations.

An example of a Tilepaint instance and its corresponding solution are given in Fig. 1. To study
the algorithmic methods for solving the Tilepaint puzzle, we use two-dimensional arrays of size
m×n to represent the Tilepaint instance, configuration, and solution. The (i, j) entry of a Tilepaint
instance is a pair (Ti,j , 0) where Ti,j is an integer denoting the tile number to which the cell (i, j)
belongs. The tiles are numbered using the row-major order convention, i.e., if there are p tiles, the
top-leftmost tile is numbered 1 while the last encountered tile is numbered p. The number 0 in
the pair (Ti,j , 0) signifies that the cell (i, j) is initially uncolored. We denote a Tilepaint instance
represented by this two-dimensional array with IG. A Tilepaint instance with numbered tiles and
its two-dimensional array representation are illustrated in Fig 1b and Fig. 1d.

A Tilepaint configuration is represented by a two-dimensional array CG where CG[i][j] =
(Ti,j , Ci,j). The definition of Ti,j is identical to the previous one for a Tilepaint instance, while
Ci,j denotes the color status of such a cell (Ci,j = 1 if and only if the cell (i, j) is colored). A
Tilepaint configuration CG is also a Tilepaint solution if it satisfies the aforementioned puzzle’s
rules.

The number on the top and left sides of the grid are correspondingly represented using two
arrays CC of size n and CR of size m. We put column constraint CC1, CC2, . . . , CCn in array
CC and row constraint CR1, CR2, . . . , CRm in array CR. Recall that the puzzle may not have
complete information, i.e., no number is defined on a particular row or column. In this case,
the value CRi or CCj is defined as −1 for algorithmic purpose. For example, for the Tilepaint
instance in Fig. 1a, we have CC = [−1, 3, 4, 3] and CR = [3, 2, 2, 4]. The output format of our
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Tilepaint puzzle solver is either a subset of {1, 2, . . . , p} or a notification that the Tilepaint puzzle
has no solution. If the puzzle has a solution, the subset of {1, 2, . . . , p} signifies the tile number
that must be colored to satisfy the rules. For example, the Tilepaint solution in Fig. 1c is a subset
of colored tiles, that is, {2, 3, 6, 7, 8}.

B. Overview of the NP-completeness of Tilepaint Puzzles

Tilepaint puzzles were recently proven NP-complete by Iwamoto and Ide in 2022 [6]. The
puzzles are NP-complete even when the constraint numbers are all defined for all rows and
columns (i.e., the puzzles have complete information or complete numerical constraint). The NP-
completeness of Tilepaint puzzles means that checking whether a configuration of an arbitrary
Tilepaint puzzle is a solution to the instance can be done in polynomial time in terms of the grid
dimension. However, unless P = NP, no known polynomial time algorithm can solve arbitrary
Tilepaint instances.

Iwamoto and Ide stated that Tilepaint puzzles can be reduced from the Three-Dimensional
Matching Problem (3DM), i.e., a problem for finding the largest three-dimensional matching in
a given hypergraph [6]. This problem itself is one of the first problems proven NP-complete by
reduction from 3-SAT [28].

Another computational problem that is similar to the Tilepaint puzzle is two-dimensional or-
thogonal discrete tomography, i.e., a problem of constructing a binary image (represented by black
and white pixels or using a binary matrix) from the given number of black pixels (or numbers of
ones) in every row and column in the instance. An illustration of a two-dimensional orthogonal
discrete tomography problem is given in Fig. 2.

2 2 4 2 2

2

2

4

2

2

(a) An instance of two-dimensional orthogonal
discrete tomography.

2 2 4 2 2

2

2

4

2

2

(b) A solution to the instance in Fig. 2a.

Fig. 2: An example of two-dimensional orthogonal discrete tomography problem.

According to previously known results in [24], [25], every instance of a two-dimensional
orthogonal discrete tomography with complete information—i.e., every row and column has a
number constraint—is solvable in polynomial time. We can verify the existence of a solution
to such an instance using majorization technique and construct such a solution using a greedy
algorithm. Notice that a Tilepaint puzzle can be considered as a two-dimensional orthogonal
discrete tomography problem with one additional rule: all cells that belong to the same tile must
be either colored or uncolored. Surprisingly, this additional rule is the aspect that makes the puzzle
NP-hard.

C. Some Important Observations

We first investigate a property regarding Tilepaint puzzles that have complete information. Here,
we prove that if the sums of the numerical constraints for the rows and columns of an instance are
different, then the instance has no solution. The following theorem is due to Ryser [24]. However,
the proof was not given in the original paper.
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Theorem 1. Suppose we consider a Tilepaint puzzle with complete information and let CRi and
CCj be the numerical constraint for row i and column j, respectively. We define SR =

∑m
i=1 CRi

and SC =
∑n

i=j CCj . The puzzle has no solution if SR ̸= SC.

Proof. Based on Definition 1, a cell is an intersection of row i and column j. Therefore, when
a cell (i, j) is colored, it is colored in a cell in row i and a cell in column j. Consequently, if
the total number of colored cells across all rows is SR, then SR must be equal to SC. If, for
instance, SR > SC, it would indicate that the colored cell in a row is not part of any column.
This is impossible as it would violate the constraints of the puzzle. The same applies in a scenario
where SR < SC.

In a Tilepaint puzzle, it is possible to determine whether a tile should be colored or not by
checking the parity of the constraint numbers located on the top and the left of the grid. We
first consider the following definition regarding the tile segment and its corresponding size in a
Tilepaint instance.

Definition 2. Suppose we consider row i (1 ≤ i ≤ m) in a Tilepaint instance of size m× n. Let
Hi ≥ 1 denotes the number of regions that appears in row i. A tile segment of row i is defined as the
collection of cells in row i belonging to the same region. We define TRi = {R1,i, R2,i, . . . , RHi,i}
as the collection of tiles segments in row i. We also define sRj,i

as the cardinality of Rj,i (1 ≤
j ≤ Hi).

Analogously, suppose we consider column j (1 ≤ j ≤ n) in a Tilepaint instance of size
m × n. Let Vj ≥ 1 denotes the number of regions that appears in column j. A tile segment
of column j is defined as the collection of cells in column j belonging to the same region. We
define TCj = {C1,j , C2,j , . . . , CVj ,j} as the collection of tiles segments in column j. We also
define sCi,j

as the cardinality of Ci,j (1 ≤ i ≤ Vj).

We provide an illustration of Definition 2 using a Tilepaint instance in Fig. 3. Notice that Rj,i

is the j-th tile segment appearing in row i. In the first row of the Tilepaint instance in Fig. 3,
we have H1 = 3 and TR1 = {R1,1, R2,1, R3,1} where R1,1 = {(1, 1), (1, 3)}, R2,1 = {(1, 2)},
and R3,1 = {(1, 4), (1, 5)}. Therefore, we have sR1,1 = |R1,1| = 2, sR2,1 = |R2,1| = 1, and
sR3,1 = |R3,1| = 2. Meanwhile, in the first column of the instance, we have V1 = 3 and TC1 =
{C1,1, C2,1, C3,1} where C1,1 = {(1, 1), (2, 1)}, C2,1 = {(3, 1), (4, 1)}, and C3,1 = {(5, 1)}.
Hence, sC1,1

= |C1,1| = 2, sC2,1
= |C2,1| = 2, and sC3,1

= |C3,1| = 1.

1
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3

3

2

2

2

5 5 2

Fig. 3: A Tilepaint instance with 25 cells and nine tiles.

The following definition formalizes the number of colored tile segments in particular rows and
columns.

Definition 3. Suppose we consider a row i and column j where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Let
moi be the number of odd-sized colored tile segments in row i and noj be the number of odd-
sized colored tile segments in column j. Similarly, let mei be the number of even-sized colored
tile segments in row i and nej be the number of even-sized colored tile segments in column j.
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The following definition formalizes the collections of colored tile segments of odd and even
size in particular rows and columns.

Definition 4. Let {RO1,i, RO2,i, . . . , ROmoi,i} and {RE1,i, RE2,i, . . . , REmei,i} correspond-
ingly denote the collection of colored tile segments with odd and even size appearing in row
i. For each ROα,i, we define soα,i as the number of cells in ROα,i where 1 ≤ α ≤ moi.
We also define seβ,i as the number of cells within REβ,i where 1 ≤ β ≤ mei. Similarly,
let {CO1,j , CO2,j , . . . , COnoj ,j} and {CE1,j , CE2,j , . . . , CEnej ,j} correspondingly denote the
collection of colored tile segments with odd and even size appearing in column j. For each COγ,j ,
we define soγ,j as the number of cells in COγ,j where 1 ≤ γ ≤ noj . We also define seδ,j as the
number of cells within CEδ,j where 1 ≤ δ ≤ nej .

We illustrate the notations in Definition 3 and Definition 4 in the following example.
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5 5 2

Fig. 4: A Tilepaint configuration of the instance in Fig. 3

Example 1. Suppose we consider a configuration in Fig. 4 and observe the third row. We have
H3 = 3 and there are three tile segments in this row, namely, R1,3 = {(3, 1), (3, 2)}, R2,3 =
{(3, 3)}, and R3,3 = {(3, 4), (3, 5)}. Thus, mo3 = 1 because we only have one odd-sized colored
tile segment in this row, i.e., R2,3. We also have me3 = 1 because we only have one even-sized
colored tile segment in this row, i.e., R1,3. Moreover, we have RO1,3 = R2,3 = {(3, 3)} and
RE1,3 = R1,3 = {(3, 1), (3, 2)}. Consequently, so1,3 = 1 and se1,3 = 2.

If we consider the third column, we have V3 = 3 and there are three tile segments in this
column, namely, C3,1 = {(1, 3), (2, 3)}, C3,2 = {(3, 3), (4, 3)}, and C3,3 = {(5, 3)}. We have
no3 = 0 because there is no odd-sized colored tile segment in this column. However, we have
ne3 = 1 because there is one even-sized colored tile segment in this column, i.e., C3,2. We have
CE3,2 = C3,2 = {(3, 3), (4, 3)} and se3,2 = 2.

Here, we prove that if CRi is odd, then there is an odd number of ROα,i that is colored (i.e.,
there is an odd number of odd-sized tile segments that is colored in row i).

Theorem 2. Suppose we consider a row i where 1 ≤ i ≤ m and there are Hi tile segments
R1,i, R2,i, . . . , RHi,i in this row. Suppose CRi is the constraint number for row i. If CRi is odd,
then there is an odd number of colored tile segments in row i where each collection of these tile
segments is of an odd size.

Proof. We prove the theorem by considering its contrapositive: if there is an even number of
colored tile segments where each tile segment is of an odd size, then CRi must be even. Notice
that soα,i is odd and seβ,i is even for every 1 ≤ α ≤ moi and 1 ≤ β ≤ mei. Let us assume that
we have an even number of colored tile segments of odd size in row i, that is, moi is even using
the notation in Definition 3. We can write soα,i = 2kα + 1 and seβ,i = 2ℓβ where kα, ℓβ ∈ Z.
Observe that the constraint CRi equals the number of colored cells in row i, i.e., the number of
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cells in the colored tile segments of odd and even sizes, thus

CRi =

(
moi∑

α=1

soα,i

)
+




mei∑

β=1

seβ,i




=

(
moi∑

α=1

2kα + 1

)
+




mei∑

β=1

2ℓβ




= 2(k1 + k2 + · · ·+ kmoi) +moi + 2(ℓ1 + ℓ2 + · · ·+ ℓmei)

Since we assume moi is even, moi = 2p for some p ∈ Z. Hence, we have,

CRi = 2(k1 + k2 + · · ·+ kmoi) + 2p+ 2(ℓ1 + ℓ2 + · · ·+ ℓmei)

= 2(k1 + k2 + · · ·+ kmoi + p+ ℓ1 + ℓ2 + · · ·+ ℓmei).

Therefore CRi is even if moi is even.

This theorem is useful for backtracking to determine which tile segments should be colored in a
row. Suppose the coloring process is performed from left to right. Here, if the number of cells that
have been colored is even and CRi is odd, then there must be an odd number of odd-sized tile
segments that must be colored to meet the parity of CRi. The following corollary is an immediate
analogy of Theorem 2.

Corollary 1. Suppose we consider a column j where 1 ≤ j ≤ n and there are Vj tile segments
Cj,1, Cj,2, . . . , CVj ,j in this column. Suppose CCj is the constraint number for column j. If CCj

is odd, then there is an odd number of colored tile segments in column j where each collection
of these tile segments is of an odd size.

In the following observation, we prove that if a constraint in a specific row or column is positive
but less than the sizes of all tile segments occurring in that row or column, then the corresponding
Tilepaint instance has no solution.

Theorem 3. Suppose there are Hi tile segments in row i, namely, {Ri,1, Ri,2, . . . , Ri,Hi
}. Let

si,j denotes the size of tile segment j in row i for 1 ≤ j ≤ Hi. If CRi satisfies 0 < CRi < si,j
for all 1 ≤ j ≤ Hi, then the corresponding Tilepaint instance has no solution.

Proof. We prove the theorem by contradiction: suppose 0 < CRi < si,j for all 1 ≤ j ≤ Hi, but
the Tilepaint instance has a solution. Suppose A = {1, 2, . . . ,Hi} denotes the set representing the
label of the tile segments. Suppose we choose 0 < m ≤ Hi tile segments to be colored, and the
label of these chosen tile segments are represented by B = {a1, a2, . . . , am}. Clearly ∅ ⊂ B ⊆ A.
Then we have CRi = si,a1

+si,a2
+ · · ·+si,am

. Since we assume CRi < si,j for all 1 ≤ j ≤ Hi,
we also have CRi < si,a1 + si,a2 + · · ·+ si,am , which is a contradiction.

The following corollary is an immediate analogy of Theorem 3.

Corollary 2. Suppose there are Vj tile segments in column j, namely Ci,j , C2,j , . . . , CVj ,j . Let sk,j
denotes the size of tile segment k in column j for 1 ≤ k ≤ Vj . If CCj satisfies 0 < CCj < sk,j
for all 1 ≤ k ≤ Vj , then the corresponding Tilepaint instance has no solution.

III. POLYNOMIAL TIME ALGORITHM FOR VERIFYING TILEPAINT SOLUTIONS

Verifying whether a Tilepaint configuration is a valid solution can be performed in polynomial
time. To verify a Tilepaint configuration, we must check if the configuration satisfies the following
rules:

1) If the puzzle has complete information, then
∑m

i=1 CRi must be equal to
∑n

j=1 CCj accord-
ing to Theorem 1.
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2) All cells in the same tile must be colored or not colored.
3) The number of colored cells in row i must be equal to CRi and the number of colored cells

in column j must be equal to CCj for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

A. Checking Constraint Related to the Sum of Numbers on Row and Column

Suppose we consider a Tilepaint puzzle with complete information. To check the compliance
of the first rule, that is,

∑m
i=1 CRi =

∑n
j=1 CCj , we first need to ensure that the numerical

constraints for all rows and columns are defined. To check it, we can iterate through two arrays
CR and CC respectively of size m and n correspondingly containing the number on the grid’s
left side and top side. If one of the arrays contains −1, then the puzzle does not have complete
numerical constraints and thus we skip this verification. Otherwise, we can independently sum all
the entries of CC and CR and check whether these sums are equal. We use a Boolean valued
function ISSUMEQUAL(CC,CR) to carry out this algorithm. This function returns true if and only
if: (1) the sum of all entries in CC and CR are identical and each array does not contain −1, or
(2) either CC or CR contain −1. The analysis of the asymptotic running time of ISSUMEQUAL
is as follows. Notice that finding the sum of all entries in CC and CR can be done in O(n)
and O(m) time, respectively. Therefore, since finding the sum of entries in the array can be done
separately, the asymptotic running time of ISSUMEQUAL is O(max{n,m}).

B. Checking the Colors of All Cells in the Same Tile

To check the second rule, we make two one-indexed arrays Colored and CellTotal of integers
whose lengths are identical to the number of tiles in the instance. Suppose we consider an instance
with p tiles T1, T2, . . . , Tp. For any 1 ≤ k ≤ p, we define Colored[k] as the number of colored
cells in Tk. Similarly, we define CellTotal[k] as the number of all cells in Tk. Notice that a
configuration satisfies this rule if either Colored[k] = 0 or Colored[k] = CellTotal[k] for any
1 ≤ k ≤ p. To obtain the array Colored and CellTotal, we visit each cell in the instance in row-
major order. For each visited cell, we increase the value of CellTotal[k] where k is the tile number
of the visited cell. Simultaneously, we increase the value of Colored[k] if the current visited cell
that belongs to tile k is colored. The algorithm returns true if and only if Colored[k] = 0 or
Colored[k] = CellTotal[k] for any tile Tk (1 ≤ k ≤ p). This process is carried out using the
function ISALLSAME that takes a Tilepaint configuration CG of size m×n with p tiles and it is
described in Algorithm 1.

Since the function ISALLSAME needs to visit m × n cells one by one and p ≤ mn, the
asymptotic running time complexity of this function is O(mn). Furthermore, we need to store
a two-dimensional array CG of size m × n and the two one-dimensional arrays Colored and
CellTotal of size p ≤ mn, then the asymptotic space complexity of this algorithm is bounded
above by O(mn).

C. Checking the Number of Colored Cells for Each Row and Column

Suppose we consider a Tilepaint instance of size m×n whose rows and columns constraints are
correspondingly stored in arrays CR of size m and CC of size n. To check whether a Tilepaint
configuration CG of size m× n satisfies rule the third rule, we firstly define ColoredRow as a
one-indexed array of size m such that ColoredRow[i] denotes the number of colored cells within
row i in CG where 1 ≤ i ≤ m. Similarly, we define ColoredCol as a one-indexed array of size
n such that ColoredCol[j] denotes the number of colored cells within column j in CG where
1 ≤ j ≤ n. Then, we do the following verification for all 1 ≤ i ≤ m and 1 ≤ j ≤ n:

1) if CR[i] ̸= −1, then the value of ColoredRow[i] must be equal to CR[i],
2) if CC[j] ̸= −1, then the value of ColoredCol[j] must be equal to CC[j].

We can fill the arrays ColoredRow and ColoredCol simultaneously by visiting each cell in CG
in row-major order. Notice that an (i, j) cell of CG contains a pair (Ti,j , Ci,j) where Ci,j is either
0 or 1. If Ci,j = 1, we increment each of ColoredRow[i] and ColoredCol[j] by 1. This process
is explained in Algorithm 2.
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Algorithm 1 ISALLSAME(CG, p) checks whether all cells in the same tile are either all colored
or uncolored in a Tilepaint configuration CG of size m× n containing p tiles.

Require: A Tilepaint configuration represented in a two-dimensional array CG of size m × n
containing p tiles. The (i, j) entry of CG is (Ti,j , Ci,j) where Ti,j denotes the tile number
(an integer between 1 and p, inclusive) and Ci,j is either 0 or 1 where 1 represents that cell
(i, j) is colored.

Ensure: The function returns true if and only if all cells in the same tile are colored or not
colored; otherwise, it returns false.

1: Colored← array of zeros of length p ▷ stores the number of colored cells in each tile k
2: CellTotal← array of zeros of length p ▷ stores the total number of cells in each tile k
3: for i← 1 to m do
4: for j ← 1 to n do
5: CellTotal[Ti,j ]← CellTotal[Ti,j ] + 1
6: if Ci,j = 1 then ▷ cell (i, j) is colored
7: Colored[Ti,j ]← Colored[Ti,j ] + 1
8: end if
9: end for

10: end for
11: AllSame← true ▷ stores the coloring status of all cells in each tile
12: k ← 1
13: while k ≤ p and AllSame do
14: if Colored[k] ̸= CellTotal[k] and Colored[k] ̸= 0 then
15: AllSame← false ▷ some, but not all, cells in Tk are colored
16: end if
17: k ← k + 1
18: end while
19: return AllSame

Since the function COMPLYCONSTRAINT needs to visit all mn cells, the asymptotic running
time complexity of this function is O(mn). Furthermore, we have CG of size m × n, two one-
dimensional arrays CC of size n and CR of size m, and two one-dimensional arrays ColoredCol
of size n and ColoredRow of size m. Thus, the asymptotic space complexity of this algorithm
is O(mn).

D. Main Verification Algorithm and Its Analysis

Suppose we are given a Tilepaint configuration of size m× n containing p of tiles represented
by a two-dimensional array CG. This configuration also considers two one-dimensional arrays
CC and CR, respectively representing the number column and row constraint. To verify whether
the configuration CG is also a valid solution, we check whether all the following functions return
true:

1) ISSUMEQUAL(CC,CR) (the sum of all entries in CC and CR are identical or the puzzle
does not have complete information),

2) ISALLSAME(CG, p) (all cells in the same tile of Tilepaint configuration CG containing p
tiles are either colored or uncolored),

3) COMPLYCONSTRAINT(CG,CC,CR) (the Tilepaint configuration CG complies with the
rows and columns contains CR and CC).

The aforementioned process is carried out using the function ISVERIFIED(CG,CC,CR, p). No-
tice that the asymptotic running time complexities of the functions ISSUMEQUAL(CC,CR),
ISALLSAME(CG, p), COMPLYCONSTRAINT(CG,CC,CR) are respectively O(max{n,m}), O(mn),
and O(mn). Thus the asymptotic upper bound for the running time of ISVERIFIED(CG,CC,CR, p)
is O(max{n,m}) +O(mn) +O(mn) = O(mn).
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Algorithm 2 COMPLYCONSTRAINT(CG,CC,CR) checks whether Tilepaint configuration CG
complies with the column and row constraints described in CC and CR.

Require: The (i, j) entry of CG is (Ti,j , Ci,j) where Ti,j denotes the tile number (an integer
between 1 and p, inclusive) and Ci,j is either 0 or 1 with 1 represents that cell (i, j) is colored.
Two arrays CC and CR of sizes n and m respectively denote the column and row constraints
of a Tilepaint puzzle.

Ensure: The function returns true if the Tilepaint configuration CG complies with the rows and
columns constraints CR and CC. Otherwise, it returns false.

1: ColoredRow ← array of zeros of length m
2: ColoredCol← array of zeros of length n
3: for i← 1 to m do
4: for j ← 1 to n do
5: if Ci,j = 1 then ▷ cell (i, j) is colored
6: ColoredCol[j]← ColoredCol[j] + 1
7: ColoredRow[i]← ColoredRow[i] + 1
8: end if
9: end for

10: end for
11: IsComply ← true ▷ the compliance status of the colored cells in the grid to the constraint
12: j ← 1
13: while j ≤ n and IsComply do
14: if CC[j] ̸= −1 and ColoredCol[j] ̸= CC[j] then
15: IsComply ← false
16: ▷ the number of colored cells in column j does not comply with the constraint number
17: end if
18: j ← j + 1
19: end while
20: i← 1
21: while i ≤ m and IsComply do
22: if CR[i] ̸= −1 and ColoredRow[i] ̸= CR[i] then
23: IsComply ← false
24: ▷ the number of colored cells in row i does not comply with the constraint number
25: end if
26: i← i+ 1
27: end while
28: return IsComply

IV. COMPLETE SEARCH METHOD FOR FINDING TILEPAINT SOLUTIONS

A complete search approach can be used to solve a Tilepaint puzzle. Here, we discuss a complete
search algorithm using a bitmask technique to generate all possible combinations of tiles’ coloring.
If there are p tiles in the instance, then there are 2p combinations of tiles’ coloring for such an
instance. Suppose we have a configuration of Tilepaint instance containing p tiles. We map the
configuration to an integer λ whose binary representation is represented by (λpλp−1 . . . λ2λ1)2
where λi ∈ {0, 1} (1 ≤ i ≤ p). Here, λi = 1 if and only if the tile Ti is colored (that is, every
cell in Ti is colored). The complete search approach with the bitmask technique works as follows:

1) First, we check whether the first rule of the verification steps is satisfied. If this rule is not
satisfied, the algorithm terminates and returns no solution.

2) We map all possible combinations of tiles’ coloring to a binary value between 0 and 2p − 1
(inclusive). Suppose we have integer λ whose value is between 0 to 2p− 1. We have λi = 1
if and only if tile Ti is colored.

3) In every iteration, we increment the value of λ and color the tiles in the instance according
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to the bit of λ. To check whether the i-th less significant bit of λ = (λpλp−1 . . . λ2λ1)2 is 1,
we use the bit-wise and operation to compute (λ)2&(2i)2 where & denotes the bit-wise and
operator and (λ)2 and (2i)2 denote the binary representations of λ and 2i, respectively. If the
result of this operation is non-zero, then we color tile Ti. The coloring process is performed
using COLOR procedure explained in Algorithm 3.

4) For each iteration, we verify whether the configuration corresponds to λ is also a solution to
the instance using ISVERIFIED function explained in Section III-D.

The above steps are explained further in Algorithm 4. To color a particular tile, we define a
procedure COLOR(CG, t, v) to color the all cells in the tile Tt (1 ≤ t ≤ p) with color v ∈ {0, 1}.
This procedure is explained in Algorithm 3. The asymptotic running time of Algorithm 3 is O(mn)
due to the doubly-nested loop in lines 1-7.

Algorithm 3 COLOR(CG, t, v) colors all cells in the tile Tt with color v. Here 1 ≤ t ≤ p and
v ∈ {0, 1} where p denotes the number of tiles in the instance.

Require: The (i, j) entry of CG is (Ti,j , Ci,j) where Ti,j denotes the tile number (an integer
between 1 and p, inclusive) and Ci,j is either 0 or 1 with 1 represents that cell (i, j) is colored.

Ensure: Every cell (i, j) in tile Ti,j satisfies Ci,j = v.
1: for i← 1 to m do
2: for j ← 1 to n do
3: if Ti,j = t then
4: Ci,j ← v
5: end if
6: end for
7: end for

We use the function FINDSOLUTIONEXHAUSTIVE as explained in Algorithm 4 for finding
one solution to a Tilepaint instance of size m × n with p tiles represented as IG with numer-
ical constraints CC and CR. Initially, this algorithm checks the compliance of the numerical
constraints for rows and columns using ISSUMEQUAL function. Subsequently, the algorithm sets
the configuration CG as IG and performs the next three aforementioned steps. If the Tilepaint
instance has a solution, then Algorithm 4 returns a subset of {1, 2, . . . , p} as the set of colored
tiles; otherwise, it returns the string “no solution”.

We provide an example related to the coloring process of Algorithm 4 in a 4 × 4 Tilepaint
instance containing four tiles in Fig. 5. The numerical constraints for this instance are CR =
[3,−1, 2, 2] and CC = [4,−1, 2, 0]. The initial instance is depicted in Fig. 5a and corresponds to
λ = 0 = (0000)2. By incrementing the value of λ by 1, we obtain the configuration in Fig. 5b that
corresponds to λ = 1 = (0001)2. Here, only tile T1 is colored. Fig. 5c illustrates the condition
after λ is incremented to 2 = (0010)2. Notice that only tile T2 is colored. Finally, Fig. 5d depicts
the condition after λ is incremented to 3 = (0011)2. This value of λ corresponds to the condition
when tiles T1 and T2 are colored. Notice that one of the solutions to the instance in Fig. 5a is
obtained when tiles T1 and T3 are colored, which corresponds to the value λ = 5 = (0101)2. In
this case, the algorithm terminates after five iterations. In general, the asymptotic running time
for Algorithm 4 is discussed in Theorem 4.

Theorem 4. The asymptotic upper bound for the running time of Algorithm 4 for an arbitrary
Tilepaint instance of size m× n with p tiles where 1 ≤ p ≤ mn is O(2p · p ·mn).

Proof. From the aforementioned analyses of the first verification rule, the asymptotic upper bound
for line 1 of Algorithm 4 is O(max{m,n}). Observe the doubly-nested loop in lines 6-23. The
inner loop in lines 8-13 and 17-21 perform p iterations each, where each iteration runs the function
COLOR whose asymptotic running time upper bound is O(mn). Thus, the asymptotic running time
complexities of lines 8-13 and 17-21 are O(p ·mn). Notice that the asymptotic running time upper
bound for line 14 is O(mn). Therefore the asymptotic running time complexity of lines 8-22 is
O(p · mn) + O(mn) + O(p · mn) = O(p · mn). Since the maximum number of iterations of
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Algorithm 4 FINDSOLUTIONEXHAUSTIVE(IG,CC,CR, p) generates all 2p configurations of
a Tilepaint instance IG containing p tiles and checks whether one of such configurations is a
solution to the instance.
Require: The (i, j) entry of IG is (Ti,j , 0) where Ti,j denotes the tile number (an integer between

1 and p, inclusive). Array CC containing n integers denotes the column constraint. Similarly,
array CR containing m integers denotes the row constraint.

Ensure: The function returns a subset of {1, 2, . . . , p} representing the colored tiles (if any
solution exists); otherwise, it returns the string “no solution”.

1: if not ISSUMEQUAL(CC,CR) then
2: return “no solution”, terminate the algorithm
3: ▷ the instance has complete information but

∑n
j=1 CC[j] ̸=∑m

i=1 CR[i]
4: end if
5: CG← IG ▷ initially, the configuration is the instance
6: for i← 0 to 2p − 1 do ▷ for generating all 2p configurations
7: tile← ∅ ▷ stores the set of colored tiles, initially it is an empty set
8: for j ← 0 to p− 1 do ▷ for generating the numbers 2j

9: if (i)2&(2j)2 ̸= 0 then ▷ j-th less significant bit of i is equal to 1
10: COLOR(CG, j + 1, 1) ▷ set all cells in Tj+1 as colored
11: tile.add(j + 1) ▷ add tile number j + 1 to the solution set
12: end if
13: end for
14: if ISVERIFIED(CG,CC,CR, p) then ▷ the configuration CG is also a solution
15: return tile, terminate the algorithm
16: else
17: for j ← 0 to p− 1 do
18: if (i)2&(2j)2 ̸= 0 then ▷ tile j + 1 is colored
19: COLOR(CG, j + 1, 0) ▷ revert tile j + 1 to uncolored
20: end if
21: end for
22: end if
23: end for
24: return “no solution”, terminate the algorithm

lines 6-23 is 2p, then we conclude that the asymptotic running time complexity of Algorithm 4
is O(2p · p ·mn).

Theorem 4 infers that the asymptotic running time complexity for Algorithm 4 is exponentially
proportional to the number of tiles in the instance. If there is only one tile, then the running time of
Algorithm 4 becomes O(mn). This is because there are only two possible configurations (namely,
all cells are colored or uncolored) and each configuration needs to be verified using algorithm
ISVERIFIED whose running time is O(mn). On the other hand, if there are mn tiles (all tiles are
of the size 1×1), then the running time of Algorithm 4 becomes O(2mn ·m2n2). This is because
each cell can be either colored or uncolored and there are 2mn coloring configurations for such
instance.

V. PRUNE-AND-SEARCH METHOD FOR FINDING TILEPAINT SOLUTIONS

Notice that Algorithm 4 generates all possible configurations without considering the observation
in Theorem 2 and Corollary 1. This makes the algorithm considers many obviously invalid
configurations. This section discusses a backtracking approach for solving the Tilepaint puzzle
that is more efficient than the complete search algorithm. Backtracking is an algorithmic technique

Fridolin et al.
Elementary Search-based Algorithms for Solving Tilepaint Puzzles 48



1 2

3 4

3

2

2

4 2 0

(a) Tile coloring configuration represented by
λ = 0 = (0000)2.
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(b) Tile coloring configuration represented by
λ = 1 = (0001)2.
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(c) Tile coloring configuration represented by
λ = 2 = (0010)2.
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(d) Tile coloring configuration represented by
λ = 3 = (0011)2.

Fig. 5: Some configurations related to the coloring process in Algorithm 4. The initial instance
is depicted in Fig. 5a.

for finding all possible answers by trying some sequence of decisions until one finds a solution
or the decision sequence is not fulfilled [29]. Moreover, the backtracking algorithm can be further
optimized with the pruning technique, i.e., eliminating sequences of decisions that do not lead to
answers. Our proposed backtracking algorithm considers additional pruning to solve the Tilepaint
puzzle, hence turning it into a prune-and-search algorithm.

We apply Theorem 2 and Corollary 1 to the prune-and-search algorithm. Recall that if CRi (resp.
CCj) is odd, then an odd number of odd-sized tile segments in row i (resp. column j) must be
colored. Suppose we have determined some tiles’ coloring status in a backtracking algorithm phase.
The pruning is conducted by considering the number of the remaining odd-sized tile segments
whose colors are still undetermined in each row i. Specifically, we check if the following condition
holds for each row i: (1) the parity of the constraint number is different from the number of cells
already colored, and (2) there are no more odd-sized tile segments left to color in row i. This
condition implies that we cannot alter the parity of the number of colored cells to match the
constraint number. If this condition is satisfied for a row, then the constraint number rule for that
particular row is impossible to be fulfilled; thus, we prune the search space and backtrack. We
may also apply the same principle when considering a column j and its numerical constraint CCj .

In our proposed backtracking approach, we determine the color of tiles one by one from tile
T1 to Tp. We first define some variables and functions to implement the pruning step for the
backtracking algorithm. We define now where 1 ≤ now ≤ p as the tile number whose coloring
status is currently being determined in the algorithm. We also define RowCell[i][Ti,j ] as the
number of cells for tile segments of tile Ti,j appearing in row i. Moreover, we also define an
auxiliary Boolean-valued function ISINUNDETERMINEDODD(i, j, now) to check if a cell (i, j)
belongs to an odd-sized tile segment in row i whose coloring status is still undetermined. This
function returns true if and only if:

1) cell (i, j) is in an odd-sized tile segment appearing in row i (i.e., RowCell[i][Ti,j ] is odd),
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2) the coloring status of the current tile that contains (i, j) is still undetermined (i.e., Ti,j > now).

The algorithm works as follows. Initially, we define two arrays ColoredRow and ColoredCol
respectively of size m and n such that ColoredRow[i] and ColoredCol[j] correspondingly denote
the numbers of colored cells in row i and column j where 1 ≤ i ≤ m and 1 ≤ j ≤ n. For each
row i, we do the aforementioned examination as follows:

1) Suppose we consider a row i where 1 ≤ i ≤ m. Firstly, we check whether row i has a
constraint. If it has no constraint (i.e., CR[i] = −1), then we skip the checking for row i.

2) Otherwise, we determine the following information:
a) ColoredRow[i], which represents the number of colored cells in row i so far;
b) RowCell[i][k], which represents the number of cells in tile Tk that appear in row i (i.e.,

size of the tile segment of tile Tk in row i), for each 1 ≤ k ≤ p;
c) OddRowRemain[i], which represents the number of undetermined odd-sized tile segments

in row i; we compute this utilizing the ISINUNDETERMINEDODD function.
3) Finally, we check if the parity of ColoredRow[i] is different from the constraint number

CR[i], and OddRowRemain[i] = 0. If it is the case, then we must prune the search space
and backtrack.

We provide an example of the above process in a 4 × 7 Tilepaint instance in Fig. 6. Suppose
we are examining row 1 in the Tilepaint instance depicted in Fig. 6a (the first row is also depicted
in Fig. 6b). Observe that ColoredRow[1] is even and CR[1] is odd. Therefore, we must color an
undetermined odd-sized tile segment to change the parity of ColoredRow[1]. We first compute the
previously mentioned information to check if this is possible. We have OddRowRemain[1] = 1
(from T2), indicating that we can still change the parity of the number of colored cells for row 1 by
coloring T2. If this were not the case, no additional coloring would assist in solving the puzzle, and
we would need to backtrack. Analogously, the same process can be done for the column constraints.
This examination process is summarized in Algorithm 5 defined by the Boolean valued function
ISREMAINROWUNCOLORED.

5
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7

3 3 2 4 4 1 1

1
2 3

4

5

(a) Example of Tilepaint configuration of size 4× 7.

5
1 2 3

(b) Row 1 of Fig. 6a, tile number 2 should be colored.

Fig. 6: Determining possible coloring for cells with odd row constraint with even number of
colored cells so far.

Since Algorithm 5 needs to visit m × n cells one by one, then the asymptotic running time
complexity is O(mn). We have CG of size m × n, a one-dimensional array CR of size m,
a one-dimensional array ColoredRow of size m, a one-dimensional array OddRowRemain
of size m, and RowCell of size m × p. Therefore, the asymptotic space complexity for this
algorithm is O(max{mn,mp}) or O(m ·max{n, p}). Similarly, to check for the compliance of
the column constraints, we define a Boolean-valued function ISREMAINCOLUMNUNCOLORED
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Algorithm 5 ISREMAINROWUNCOLORED(CG,CR, now) checks if the configuration CG is a
possible solution by counting the remaining number of undetermined odd-sized tiles segment in
each row by considering tile Tnow.

Require: The (i, j) entry of CG is (Ti,j , Ci,j) where Ti,j denotes the tile number (an integer
between 1 and p, inclusive) and Ci,j is either 0 or 1 with 1 represents that cell (i, j) is colored.
Array CR containing m integers denotes the row constraint. A number now denotes the tile
number whose coloring status is last determined.

Ensure: The function returns true if it is still possible to color tile Tnow and for each row to
match the parity of the constraint number described in CR. Otherwise, it returns false.

1: ColoredRow ← array of zeros of length m
2: ▷ array to store the number of colored cells in each row
3: OddRowRemain ← array of zeros of length m
4: ▷ array to store the number of odd-sized tile segments that remain undetermined in each row
5: RowCell ← array of zeros of size m× p
6: ▷ RowCell[i][k] stores the number of cells in row i appearing in a tile segment of Tk

7: HasOddTS ← true ▷ signify the existence of an undetermined odd-sized tile segment
8: i← 1
9: while i ≤ m and HasOddTS do

10: if CR[i] ̸= −1 then
11: ▷ check if row i has no constraint number
12: for j ← 1 to n do
13: if Ci,j = 1 then ▷ cell (i, j) is colored
14: ColoredRow[i]← ColoredRow[i] + 1
15: end if
16: RowCell[i][Ti,j ]← RowCell[i][Ti,j ] + 1
17: end for
18: if ColoredRow[i] mod 2 = CR[i] mod 2 then
19: continue
20: ▷ skip the parity checking since the parity for the number of colored cells equals

the parity of the constraint number
21: end if
22: for j ← 1 to n do
23: if ISINUNDETERMINEDODD(i, j, now) then
24: ▷ check whether the current RowCell[i][Ti,j ] is odd, Ti,j > now, and the color

of tile Ti,j is still undetermined
25: OddRowRemain[i]← OddRowRemain[i] + 1
26: RowCell[i][Ti,j ]← 0 ▷ set RowCell[i][Ti,j ] to 0 to avoid double-counting
27: end if
28: end for
29: if (ColoredRow[i] is even) and (CR[i] is odd) and OddRowRemain[i] = 0 then
30: HasOddTS ← false
31: ▷ CR[i] is odd, no remaining odd-sized tile segment in row i
32: end if
33: if (ColoredRow[i] is odd) and (CR[i] is even) and OddRowRemain[i] = 0 then
34: HasOddTS ← false
35: ▷ ColoredRow[i] is odd, no remaining odd-sized tile segment in row i
36: end if
37: end if
38: i← i+ 1
39: end while
40: return HasOddTS
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that works analogously to ISREMAINROWUNCOLORED. We leave the detailed description of
ISREMAINCOLUMNUNCOLORED to the readers.

Finally, the main process of the backtracking algorithm works as follows:
1) First, we check whether the sum of the row constraints and the sum of the column constraints

are equal or if the puzzle has no complete information using ISSUMEQUAL function, similar
to the check of the first verification rule. If this condition is not satisfied, we terminate the
algorithm and conclude that the instance has no solution.

2) We determine the color of tiles one by one from tile T1 to Tp. We assign 1 to tile Tk

(1 ≤ k ≤ p) if all cells within this tile are colored, and we assign 0 otherwise. We use the
variable now to track the currently determined tile.

3) Along with the tile coloring, we check if the current configuration still satisfies the constraint
of the columns and rows. Suppose we color tile Tnow:

a) If ColoredRow[i] > CR[i] or ColoredCol[j] > CC[j], then Tnow must not be colored.
The reason is the configuration no longer satisfies the constraint even if we color Tnow+1.
Therefore, we uncolor Tnow and continue to backtrack.

b) If the aforementioned function ISREMAINROWUNCOLORED or ISREMAINCOLUMNUN-
COLORED return false, then the configuration no longer satisfies the constraint. Thus, we
uncolor Tnow and continue to backtrack.

This process is summarized in Algorithm 6.
4) If the coloring status of all cells has been determined, a configuration is found. We use

Algorithm 2 to ensure the configuration is a solution. If that is the case, we output a list
(possibly empty) representing the number of colored tiles in the configuration and terminate
the algorithm.

The main backtracking algorithm is explained in Algorithm 7, which takes a configuration
CG, arrays of columns’ and rows’ constraints CC and CR, the number of tiles p, the currently
investigated tile now, and a list tile containing the number of all colored tiles the current state of
the backtracking process. This backtracking algorithm is used for the prune-and-search algorithm
for finding a solution to the puzzle as explained in Algorithm 8. This prune-and-search algorithm
begins the backtracking process from the top-leftmost tile (i.e., the tile to which the cell (1, 1)
belongs). We illustrate a pruned state space tree generated by Algorithm 8 in solving a 2 × 3
Tilepaint puzzle containing four regions in Fig. 7. The following theorem discusses the asymptotic
upper bound for the running time of our prune-and-search approach in solving an m×n Tilepaint
instance with p tiles.

Theorem 5. The asymptotic upper bound for the running time of Algorithm 8 for an arbitrary
Tilepaint instance of size m× n with p tiles where 1 ≤ p ≤ mn is O(2p ·mn).

Proof. The prune-and-search technique described in Algorithm 8 which uses the backtracking
approach in Algorithm 7 has two possible states in each phase, i.e., a tile being colored or left
uncolored. Thus, the steps in Algorithm 8 can be modeled with a state space tree with two
possibilities for each non-terminal state. In the worst case, we try every possible tile coloring in
the instance. Therefore, there are at most 2i states at level i in the state space tree. Consequently,
the number of states in this state space tree model is

∑p
i=0 2

i = 2p+1 − 1. Moreover, we have a
function COLOR to color tiles and a function COMPLYCONSTRAINT to verify the compliance of
the resulting configuration in each state, in which the running time complexity of both functions is
O(mn). As a result, the computational cost of Algorithm 8 is bounded above by O(2p ·mn).

Theorem 5 infers that the asymptotic running time for Algorithm 8 is exponentially proportional
to the number of tiles in the instance. Nevertheless, Algorithm 8 is asymptotically faster than the
complete search method explained in Algorithm 4 by a factor of p. If an m×n Tilepaint instance
has only one tile, the running time of Algorithm 8 becomes O(mn), which is similar to that of
Algorithm 4 for the same case. However, if such an instance has mn tiles of size 1×1, the running
time of Algorithm 8 becomes O(2mn ·mn), which is asymptotically faster than Algorithm 4 by
a factor of mn.
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Algorithm 6 ISVALIDCONF(CG,CC,CR, now) returns true if the configuration CG with column
and row constraints CC and CR is still possible to comply with the puzzle’s rule after tile Tnow

is colored.
Require: The (i, j) entry of CG is (Ti,j , Ci,j) where Ti,j denotes the tile number (an integer

between 1 and p, inclusive) and Ci,j is either 0 or 1 with 1 represents that cell (i, j) is
colored. Array CC containing n integers denotes the column constraint. Similarly, array CR
containing m integers denotes the row constraint. A number now denotes the tile number
whose coloring status was last determined.

Ensure: The function returns true if the configuration is still possible to comply with the puzzle’s
rule after Tnow is colored. Otherwise, it returns false.

1: ColoredRow ← array of zeros of length m
2: ColoredCol ← array of zeros of length n
3: for i← 1 to m do
4: for j ← 1 to n do
5: if Ci,j = 1 then ▷ cell (i, j) is colored
6: ColoredRow[i]← ColoredRow[i] + 1
7: ColoredCol[j]← ColoredCol[j] + 1
8: end if
9: end for

10: end for
11: NotExeceedCRCC ← true
12: ▷ signify that the number of colored cells is not more than the corresponding constraint
13: j ← 1
14: while j ≤ n and NotExeceedCRCC do
15: if CC[j] ̸= −1 and ColoredCol[j] > CC[j] then
16: NotExeceedCRCC ← false
17: ▷ more colored cells in column j than its column’s constraint
18: end if
19: j ← j + 1
20: end while
21: i← 1
22: while i ≤ m and NotExeceedCRCC do
23: if CR[i] ̸= −1 and ColoredRow[i] > CR[i] then
24: NotExeceedCRCC ← false
25: ▷ more colored cells in row i than its row’s constraint
26: end if
27: i← i+ 1
28: end while
29: RemainRow ← ISREMAINROWUNCOLORED(CG,CR, now)
30: RemainCol← ISREMAINCOLUMNUNCOLORED(CG,CC, now)
31: return NotExeceedCRCC and RemainRow and RemainCol

VI. TRACTABLE VARIANTS OF TILEPAINT PUZZLES

In some cases, NP-complete problems may contain subproblems or specific cases that belong
to the class P, which consists of problems solvable in polynomial time. For example, the general
k-CNF-SAT is NP-complete, but the 2-CNF-SAT is solvable in linear time by means of impli-
cation graphs [30]. The general Nonogram puzzle, which is related to two-dimensional discrete
tomography, is NP-complete, but the problem is solvable in polynomial time if every row and
column contains a single block of connected cells [31]. Finally, although the general Yin-Yang
puzzle is NP-complete, its variant of size m×n where m or n is less than 3 is solvable in linear
time [20, Theorem 2 and Theorem 3].
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Algorithm 7 BACKTRACK(now,CG, p, CC,CR, tile) determines the coloring status of the
current tile number now recursively in a configuration CG containing p tiles with column and
row constraints CC and CR and storing the current configuration of colored tiles in a list tile.

Require: The (i, j) entry of CG is (Ti,j , Ci,j) where Ti,j denotes the tile number (an integer
between 1 and p, inclusive) and Ci,j is either 0 or 1 with 1 represents that cell (i, j) is
colored. Array CC size n of integers denotes the column constraint. Similarly, array CR
size m of integers denotes the row constraint. A list tile of tile numbers that are colored in
the configuration. The backtracking algorithm currently investigates the coloring for tile now
(1 ≤ now ≤ p).

Ensure: The procedure updates tile as the list of the colored tiles’ numbers representing the
possible solution to the instance.

1: if now > p then ▷ no more tile coloring status to determine
2: if COMPLYCONSTRAINT(CG,CC,CR) then
3: output(tile) ▷ output the configuration, which is also a solution to the instance
4: terminate the procedure ▷ procedure terminates if a solution is found
5: end if
6: else
7: for i ∈ {1, 0} do ▷ two status of tile’s color to determine
8: COLOR(CG,now, i) ▷ color all cell in Tnow by i
9: if i = 0 then ▷ Tnow colored by 0, i.e., left white

10: BACKTRACK(now + 1, CG, p, CC,CR, tile) ▷ continue to the next tile
11: else ▷ Tnow colored by 1, i.e., blackened
12: tile.append(now) ▷ add the now to the list tile
13: if not ISVALIDCONF(CG,CC,CR, now) then
14: ▷ the configuration cannot possibly complies with the constraint
15: COLOR(CG,now, 0) ▷ revert Tnow to uncolored
16: tile.pop_back() ▷ take out the last stored entry in tile
17: else
18: BACKTRACK(now + 1, CG, p, CC,CR, tile) ▷ continue to the next tile
19: tile.pop_back() ▷ take out the last stored entry in tile
20: COLOR(CG,now, 0) ▷ revert Tnow to uncolored
21: end if
22: end if
23: end for
24: end if

Algorithm 8 FINDSOLUTIONPRUNE(CG, p, CC,CR) is the main prune-and-search algorithm to
find the solution from configuration CG containing p tiles with column and row constraint CC
and CR.
Require: The (i, j) entry of CG is (Ti,j , Ci,j) where Ti,j denotes the tile number (an integer

between 1 and p, inclusive) and Ci,j is either 0 or 1 with 1 represents that cell (i, j) is colored.
Array CC size n of integers denotes the column constraint. Similarly, array CR size m of
integers denotes the row constraint. The number of tiles in the instance is denoted by p.

Ensure: The procedure returns the list of colored tiles’ numbers representing the solution to the
instance (if any) or a string “no solution” otherwise.

1: tile← empty list
2: if not ISSUMEQUAL(CR,CC) then
3: return “no solution”
4: ▷ the instance has complete information but

∑n
j=1 CC[j] ̸=∑m

i=1 CR[i]
5: end if
6: BACKTRACK(1, CG, p, CC,CR, tile)
7: ▷ start the backtracking process from the top-leftmost region to which the cell (1, 1) belongs
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Fig. 7: The pruned state space tree generated by Algorithm 8 in solving a 2×3 Tilepaint instance
with four tiles (far left). The i-th level of the tree determines whether the tile i is colored or
uncolored. The grid states that are marked with red crosses are the state that cannot possibly lead
to a solution (i.e., it does not satisfy one of the conditions in step 3), while the grid with a green
check mark is the solution.

In this section, we discuss the tractable variants of Tilepaint puzzles of size m×n with mn tiles
of size 1×1 and complete information (i.e., the constraints for all rows and columns are defined).
Notice that, according to Theorem 5, solving such an instance using the prune-and-search approach
as in Algorithm 8 requires O(2mn ·mn) time, which is exponential in terms of the puzzle’s size.
However, this instance resembles a two-dimensional discrete tomography problem with complete
information, which has been extensively studied by Ryser [24] and Herman and Kuba [25]. We
refer to this instance as an “mn-tile instance” for brevity.

In this section, we treat the mn-tile instance as an instance of a two-dimensional discrete
tomography problem. Using the techniques in [24], [25], we show that such an instance is
solvable in polynomial time. Fig. 8 describes an mn-tile instance and its two-dimensional discrete
tomography counterpart.

A. Verifying the Solution’s Existence of mn-tile Instance

Given an mn-tile instance, we can verify whether such an instance has a solution in a polynomial
time. As in Section II, suppose the constraints for the rows and columns are respectively denoted
by CR = [CR1, CR2, . . . , CRm] and CC = [CC1, CC2, . . . , CCn]. Based on [24], we can verify
the existence of the solution to this instance using the following steps:

1) We verify if the sum of the constraint number for the rows and columns is identical as
described in Theorem 1.

2) We verify that CRi ≤ n and CCj ≤ m for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.
3) Given X = [x1, x2, . . . , xn] where xj = |{i : CRi ≥ j}| and 1 ≤ j ≤ n, then X must

majorize CC ′ which is obtained from sorting the entries of CC in non-increasing order. It
can be shown that X is already sorted in non-increasing order. Let A = [a1, a2, . . . , an] and
B = [b1, b2, . . . , bn] are two arrays whose entries are sorted in non-increasing order, then A
majorizes B if

∑k
i=1 ai ≥

∑k
j=1 bj for every 1 ≤ k ≤ n.

We can easily perform the first two steps in O(max{m,n}) time. As for the third rule related to
majorization, the verification process can be done by computing the prefix sum of arrays of X and
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(d) A solution to the instance in Fig. 8b.

Fig. 8: An mn-tile instance and its corresponding two-dimensional discrete tomography problem
counterpart.

CC ′. Notice that the construction of X can be done in O(mn) time. Recall that the prefix sum
array of X is defined as PX where PX[i] =

∑i
k=1 X[k]. Similarly, the prefix sum array of CC ′

is defined as PCC where PCC[i] =
∑i

k=1 CC ′[k]. We need to check that PX[i] ≥ PCC[i] for
all 1 ≤ i ≤ n. The construction of both PX and PCC can be performed O(n) time. Since an
optimal comparison-based sorting of n entries requires O(n log n) time, then the overall process
in the third step requires O(n · max{m, log n}) time. However, if we instead use a linear time
sorting technique, such as counting sort for constructing CC ′, the running time of the third step
becomes O(mn).

For future reference, let us define ISMNTILEVERIFIED(CR,CC,m, n) as a function that re-
turns true if and only if an mn-tile instance with the row and column constraints CR and CC com-
plies with all three aforementioned rules. In other words, ISMNTILEVERIFIED(CR,CC,m, n)
returns true if and only if such an instance has a solution. Based on the aforementioned analyses,
the asymptotic upper bound for the running time of this verification process can be expressed
as 2 · O(max{m,n}) + O(n · max{m, log n}) = O(n · max{m, log n}), that is, we can check
whether an mn-tile instance has a solution in O(n ·max{m, log n}) time. Notice that if we use a
linear time sorting algorithm such as counting sort for sorting CC, this process can be achieved
in O(mn) time.

B. Solving an mn-tile Tilepaint Instance Using Greedy Algorithm

In [24], Ryser shows that we can construct a solution to an mn-tile instance by incrementally
transforms X where X = [x1, x2, . . . , xn], xj = |{i : CRi ≥ j}| into CC. Nevertheless, there is
an easier and more efficient approach, as discussed by Stolk in [32, Example 1.1.15]. The idea
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for constructing the solution is to color the cells greedily in columns, starting with the column
with the highest constraint number. For each column, we color the cells in rows that require the
most colors to satisfy their constraint numbers. In each iteration, a column is considered to require
the most colors if it has the largest value of row constraint minus the number of cells already
colored in that column. The following steps elaborate the greedy algorithm for solving an mn-tile
instance:

1) First, we check whether the instance has a solution using the function ISMNTILEVERIFIED
as in Section VI-A. If the function returns false, we terminate the algorithm and conclude
that the instance has no solution.

2) We construct an array Col of size n to store the order of column indices to process, starting
from the column with the highest constraint number to the lowest. In other words, Col stores
the permutation of the indices of CC sorted in non-increasing order.

3) We construct an array Row of size m to store the order of row indices to process, starting
from the row with the highest constraint number to the lowest. In other words, Row stores
the permutation of the indices of CR sorted in non-increasing order.

4) For each column index j in Col and row index r in Row, we color the cell (i, j) such
that i = Row[r]. For each coloring action, we also decrease the value of CR[i] and CC[j]
simultaneously.

5) Steps 3 and 4 are repeated CC[j] times for each column index j (1 ≤ j ≤ n).
6) A solution is found if the process has been performed for all column indices.
We expound this process in Algorithm 9. Observe that line 4 of Algorithm 9 constructs an array

Col of length n by sorting the array CC. This process takes O(n log n) time. Notice that if we
use a linear time sorting algorithm such as counting sort for constructing Col, this process can
be achieved in O(n) time. Consider a doubly-nested loop in lines 5-13. The inner loop in lines
7-12 performs CC[j] (1 ≤ j ≤ n) iterations where CC[j] ≤ m. Notice that line 6 of Algorithm 9
constructs an array Row of length m by sorting the array CR. This step requires O(m logm) time.
If we instead use a linear time sorting algorithm such as counting sort for constructing Row, this
step can be achieved in O(m) time. Since the outer loop in lines 5-13 performs n iterations, the
asymptotic upper bound for lines 5-13 becomes O(n · (m logm+m)) = O(mn logm). Since line
4 takes O(n log n) time, the overall asymptotic upper bound for the running time of Algorithm
9 becomes O(mn logm) + O(n log n) = O(mn logm + n log n). Using a linear time sorting
algorithm makes the time complexity of Algorithm 9 becomes O(mn).

VII. INTRACTABILITY OF ONE-DIMENSIONAL TILEPAINT PUZZLES

Some NP-hard puzzles remain computationally hard even if we reduce the dimension of such
puzzles. One notable example is the famous video game-based puzzle Tetris, which is hard even
if the number of rows or columns is bounded by a constant [33]. Suppose we restrict the Tilepaint
instance to a size of m × 1 or 1 × n, hence making it one-dimensional. We find that the puzzle
generally remains intractable to solve even in this reduced form. This section discusses Tilepaint
puzzles of this type whose formal definition is given in Definition 5.

Definition 5. A one-dimensional Tilepaint is a Tilepaint puzzle with only one row or column with
a constraint number. The cells in this puzzle are divided into tiles, visually represented by bold
lines. An integer is located at the top (for an instance of size m×1) or on the left (for an instance
of size 1× n), indicating the required number of colored cells. Each cell must be either colored
or uncolored. Additionally, all cells within the same tile must share the same color, either colored
or uncolored.

Since a Tilepaint puzzle of size m× 1 can be transformed into a puzzle of size 1×m, we only
focus on 1×n puzzle where n ∈ N. An example of a 1×8 Tilepaint puzzle and its corresponding
solutions is discussed in Example 2.
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Algorithm 9 SOLVEMNTILE(CG,CR,CC,m, n) returns a configuration CG (if any) which is
a solution to an mn-tile instance with row and column constraints CR and CC.
Require: The (i, j) entry of CG is (Ti,j , Ci,j) where Ti,j denotes the tile number (an integer

between 1 and mn, inclusive) and Ci,j is either 0 or 1 with 1 represents that cell (i, j) is
colored. The row constraint is the array CR of size m, while the column constraint is the
array CC of size n.

Ensure: The function returns the solution to the instance (if any). Otherwise, it returns a string
“no solution”.

1: if not ISMNTILEVERIFIED(CR,CC,m, n) then
2: return “no solution”, terminate the algorithm
3: end if
4: Col← permutation of the indices of CC sorted in non-increasing order
5: for j in Col do
6: Row ← permutation of the indices of CR sorted in non-increasing order
7: for r ← 1 to CC[j] do
8: i← Row[r]
9: Ci,j ← 1

10: CC[j]← CC[j]− 1
11: CR[i]← CR[i]− 1
12: end for
13: end for
14: return CG

Example 2. Suppose we consider a Tilepaint instance of size 1 × 8 in Fig. 9. In Fig. 9a we
consider an instance with three tiles of size 3, 3, and 2 (from left to right). We must color five
cells according to the value of the constraint number. There are two solutions to such an instance,
depicted in Fig. 9b and Fig. 9c. It is also possible to have instances with no solution as in Fig.
9d and Fig. 9e.

5

(a) A 1× 8 one-dimensional Tilepaint instance.

5

(b) A solution to the instance in Fig. 9a.

5

(c) Another solution to the instance in Fig. 9a.

4

(d) A 1× 8 one-dimensional Tilepaint instance with no solution.

3

(e) Another 1×8 one-dimensional Tilepaint instance with no solution.

Fig. 9: Several instances and solutions of one-dimensional Tilepaint puzzles. Fig. 9a is an instance
with two solutions depicted in Fig. 9b and Fig. 9c. Fig. 9d and Fig. 9e depict two distinct instances
with no solution.
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In a 1 × n Tilepaint instance with p tiles T1, T2, . . . , Tp, we define si for each 1 ≤ i ≤ p as
the size (the number of cells) of tile Ti. We can represent these sizes using an array of integers
S = [s1, s2, . . . , sp]. For example, the array representing the sizes of the tiles in the instance in
Fig. 9a is S = [3, 3, 2]. Since the constraint number is five, we need to color five cells in this
instance such that all cells in the same tile must be colored or uncolored. Notice that the condition
is identical to the problem of taking some entries of S so that the sum of these entries equals to
the constraint number. For the Tilepaint instance in Fig. 9a, we have s1 + s3 = 5 or s2 + s3 = 5,
which correspondingly represent the solutions in Fig. 9b and Fig. 9c. Notice that we identify a
connection between the one-dimensional Tilepaint puzzle and the well-known subset-sum problem.
The constraint number becomes the target sum and our objective is to find a sub-array of S whose
sum equals to the constraint number.

A. Important Observation for One-dimensional Tilepaint Puzzle

The theorems from Section II also apply to the one-dimensional Tilepaint puzzle. It is possible
to determine whether a tile must be colored based on the constraint number’s parity. We first refine
Definition 3 for a one-dimensional Tilepaint puzzle in Definition 6.

Definition 6. Suppose we consider a 1 × n Tilepaint instance with p tiles. Let mo and me
respectively be the number of colored tiles where the tiles’ sizes are odd and even, where 0 ≤
mo+me ≤ p. Let RO1, RO2, . . . , ROmo and RE1, RE2, . . . , REme correspondingly denote the
collection of tiles with odd and even sizes. For each ROi, we define soi as the sizes of ROi.
Moreover, we define sei as the sizes of REi.

The following theorem is a special case of Theorem 2 for the one-dimensional Tilepaint puzzle.

Theorem 6. Suppose we consider a 1× n Tilepaint instance with p tiles T1, T2, . . . , Tp. Suppose
CR is the constraint number. If CR is odd, then there must be an odd number of colored tiles
where each region is of an odd size.

Proof. The proof is analogous to that of Theorem 2.

In the following theorem, we state that if a constraint number is positive but less than the size
of any tile in the instance, then such an instance has no solution.

Theorem 7. Suppose we consider a 1× n Tilepaint instance with p tiles T1, T2, . . . , Tp. Suppose
S = [s1, s2, . . . , sp] is an array where si is the size of Ti (1 ≤ i ≤ p). If CR satisfies 0 < CR < si
for all 1 ≤ i ≤ p, then the corresponding Tilepaint instance has no solution.

Proof. The proof is analogous to that of Theorem 3.

B. NP-Completeness of the Subset-Sum Problem

Suppose we have an array containing n integers. Given a target number h ∈ Z, the subset-sum
problem is a problem to determine the existence of the subset of those n numbers whose sum is
exactly h. This problem is a special case of the Binary Knapsack Problem. It is well-known that
the aforementioned subset-sum problem can be solved using a dynamic programming approach in
O(nh) pseudo-polynomial time. This is because, even though O(nh) is polynomial in terms of n
and h, this expression is exponential if we consider the number of bits to represent h. That is, the
complexity for solving such a problem is O(n · 2m) where m is the number of bits to represent
h. The subset-sum problem can be reduced from the 3-SAT problem (see, e.g., [28], [34]).

C. The Reduction of the Subset-Sum Problem to the One-dimensional Tilepaint Puzzle

Firstly, we recall the definition of the subset-sum instance in Definition 7. However, we are
only interested in arrays with positive integer entries and positive target sum in this definition.2

2The original subset-sum problem, which is proven NP-complete, involves an array of non-positive integers. However,
reducing the 3-SAT problem to a subset-sum problem involving an array containing only positive integers and positive
target sum is possible. See, e.g., [35].
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Definition 7. Suppose we consider an array A = [a1, a2, . . . , ak] of size k where ai ∈ N and
h ∈ N. A subset-sum instance concerning A and h is defined as a pair (A, h) where h is the
target sum. The solution to this instance is a sub-array of A whose sum of entries equals h. For
convenience, we denote the sum of all entries in A by S.

To construct a reduction from the subset-sum instance to the Tilepaint puzzle, we first formalize
the definition of an m × n Tilepaint instance IG with numerical constraints CR and CC as a
five-tuple (m,n, IG,CR,CC). Notice that a 1×n Tilepaint instance of our interest is defined as
(1, n, IG,CR,CC), where CR = [CR1] and CC is an array of −1 of length n. We are interested
in the case where CR1 is a positive integer since if CR1 = −1 or CR1 = 0, then we have a
trivial solution to the instance.

Suppose we consider a subset-sum instance (A, h) where A = [a1, a2, . . . , ak] and h ∈ N as
defined in Definition 7. We can convert this instance into a Tilepaint instance by creating k tiles
whose sizes correspond to each entry of A, that is, ai for 1 ≤ i ≤ k corresponds to the size of
tile Ti. Moreover, we set h as the constraint number CR1. We define the function f((A, h)) that
converts a subset-sum instance (A, h) to a one-dimensional Tilepaint instance as follows:

f((A, h)) = (m,n, IG,CR,CC)

m = 1, n = S

IG = [[(1, 0), . . . , (1, 0)︸ ︷︷ ︸
a1 terms

, (2, 0), . . . , (2, 0)︸ ︷︷ ︸
a2 terms

, . . . , (k, 0), . . . , (k, 0)︸ ︷︷ ︸
ak terms

]]

CR = [h], CC = [−1, . . . ,−1︸ ︷︷ ︸
S terms

]

(1)

The reduction steps of a subset-sum instance into its corresponding Tilepaint instance are as
follows:

1) First, we define a two-dimensional array IG of size 1 × S representing a one-dimensional
Tilepaint instance. Each entry of IG is (T1,j , 0) where T1,j denotes the tile number (an integer
between 1 and k, inclusive) and 0 represents that the cell (1, j) is uncolored. Moreover, we
define a number S to store the size/width of the one-dimensional Tilepaint instance. Hereafter,
we can assign CR as a one-dimensional array containing the only row constraint represented
by a single integer h.

2) For each ai in A, we construct ai cells corresponding to tile Ti. We have a1 cells in tile
T1, a2 cells in tile T2, and so on up to ak cells in tile Tk. The first a1 entries of IG, i.e.,
IG[1][j] where 1 ≤ j ≤ a1 are filled with (1, 0), indicating that these cells belong to T1.
The next a2 entries of IG, i.e., IG[1][j] where a1 + 1 ≤ j ≤ a1 + a2 are filled with (2, 0),
indicating that these cells belong to T2. This process is performed until the last ak entries
of IG, i.e., IG[1][j] where S − ak + 1 ≤ j ≤ S are filled with (k, 0), indicating that these
cells belong to Tk.

3) We construct a one-dimensional array CC of size S and fill each entry with −1 (since there
is no column constraint).

4) Finally, the function returns a tuple of (1, S, IG,CR,CC) representing the one-dimensional
Tilepaint instance.

We can convert the instance of a subset-sum problem into its corresponding Tilepaint instance
using Algorithm 10. Thus, the previous search-based algorithm for the Tilepaint puzzle, such as
the complete search or backtracking approach, can indirectly solve the subset-sum instance in
Definition 7.

We elaborate the reduction process in Algorithm 10. The inner for loop in lines 6-8 runs ai
times for each 1 ≤ i ≤ k. Each step in lines 6-8 constructs a pair (i, 0) for each 1 ≤ i ≤ k
corresponding to the entry of cells (1, j) where (

∑i−1
ℓ=1 aℓ) + 1 ≤ j ≤ ∑i

ℓ=1 aℓ, which can be
done in O(1) time. As a result, the loop in lines 5-10 runs

∑k
i=1 ai = S times, and thus the

asymptotic running time of Algorithm 10 is O(S).
In the following lemma, we prove a relation between the subset-sum and one-dimensional

Tilepaint instances as described by the reduction function f in (1).
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Algorithm 10 CONVERTINSTANCE(A, h) converts the subset-sum instance (A, h) where A =
[a1, a2, . . . , ak] with ai, h ∈ N for 1 ≤ i ≤ k where h is the target sum into its corresponding
one-dimensional Tilepaint instance.

Require: An array A = [a1, a2, . . . , ak] and a number h denoting the target sum, ai, h ∈ N for
every 1 ≤ i ≤ k.

Ensure: A 1× n Tilepaint instance as defined in (1).
1: IG← array of size 1× S
2: ▷ stores the corresponding one-dimensional Tilepaint instance as in (1)
3: PA← 0 ▷ stores the prefix sum of A
4: CR← [h]
5: for i← 1 to k do
6: for j ← 1 to A[i] do
7: IG[1][PA+ j]← (i, 0)
8: end for
9: PA← PA+A[i]

10: end for
11: CC ← array of size S
12: for i← 1 to S do
13: CC[i]← −1
14: end for
15: return (1, S, IG,CR,CC)

Lemma 1. A subset-sum instance (A, h) as in Definition 7 has a solution if and only if its
corresponding one-dimensional Tilepaint instance has a solution.

Proof. Let us consider a subset-sum instance (A, h) with A = [a1, a2, . . . , ak] and its correspond-
ing one-dimensional Tilepaint instance (1, S, IG,CR,CC) where CR = [h] and CC is an array
of −1 of length S where S =

∑k
i=1 ai. Let us denote the i-th tile by Ti where 1 ≤ i ≤ k. Tile

T1 contains first a1 cells, T2 contains the next a2 cells, and so on up to Tk contains the last ak
cells. We split the proof in two parts as follows.

Part 1: If (A, h) has a solution, then its corresponding one-dimensional Tilepaint instance has
a solution. Suppose the subset-sum instance (A, h) has a solution, which means that there is a
sub-array of A whose sum equals h. We can construct a binary array B = [b1, b2, . . . , bk] where
bi ∈ {0, 1} for 1 ≤ i ≤ k and define

∑k
i=1 bi · ai = h. That is, bi = 1 if and only if ai belongs

to the sub-array of A whose sum equals h. By the construction of f in (1), this also means that
tile Ti where bi = 1 is colored. Notice that the number of colored cells in the one-dimensional
Tilepaint instance equals h = CR1, which implies that the one-dimensional Tilepaint instance has
a solution.

Part 2: If the one-dimensional Tilepaint instance has a solution, then its corresponding subset-
sum instance has a solution. Suppose we have a solution to the one-dimensional Tilepaint instance
(1, n, IG,CR,CC) where CR = [CR1] and CC is an array of length n containing −1. Suppose
this instance contains p tiles and a solution exists by coloring some tiles (possibly none) among
T1, T2, . . . , Tp. Using f in (1), we define that if tile Ti where 1 ≤ i ≤ n is colored, then ai, which
corresponds to the size of Ti, is taken as an entry of a sub-array of A. Let us define a binary
array B = [b1, b2, . . . , bp] where bi ∈ {0, 1} and bi = 1 if and only if Ti colored. Consequently,
we also have bi = 1 if and only if ai is taken as an entry of a sub-array of A. The sum of all
entries of such a sub-array is given by

∑p
i=1 bi ·ai = CR1 = h. In other words, the corresponding

subset-sum instance (A, h) has a solution.

The NP-completeness proof of the one-dimensional Tilepaint puzzles in Lemma 1 indirectly
implies the NP-completeness of the general m×n puzzles if the tiles’ shapes consist only of one
row/column.
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VIII. EXPERIMENTAL RESULTS

This section discusses the experimental result for measuring the actual running time of the
proposed complete search and prune-and-search techniques. The experiment was conducted on a
personal computer with 64-bit Windows 10 operating system and the algorithm was implemented
using C++ programming language. The system used g++ compiler version 6.3.0 (MinGW.org
GCC-6.3.0-1) with Intel(R) Core(TM) i7-8750H 2.20 GHz processor and 16 GB of RAM. We
chose C++ because it tends to be faster than other well-known programming languages [36].
The repository regarding the verification algorithm, solver algorithms (both complete search and
backtracking techniques), test cases (instance and solution of the puzzles), and the experimental
results are provided at https://github.com/vincentiusar/Tilepaint-Solver.

The experiment considered the test cases collected from [37]. There are 250 test cases with
three kinds of instance sizes, i.e., 10× 10, 12× 12, and 15× 15. Each instance is guaranteed to
have exactly one solution. The objective was to obtain the average execution time of three runs
for the algorithms to solve an instance. Note that not all solutions to the instances can be found
due to the limitation of our computational device.

From 250 test cases, only 48 test cases of size 10 × 10 can be solved using the complete
search approach under 10 minutes. The minimum recorded running time is 4 118 ms, while the
maximum is 554 978 ms. On average, the complete search method requires 149 751.257 ms to
solve an instance of size 10× 10 among 48 test cases.

Out of the 250 test cases, all test cases of size 10 × 10 and 12 × 12 are successfully solved
using the prune-and-search algorithm in under 10 minutes. However, only 25 test cases of size
15× 15 can be solved under the same time limit. Some 10× 10 instances can be solved quickly
in less than 0.001 ms.

From theoretical analysis, the asymptotic running time of the prune-and-search method is faster
than the complete search approach by a factor of p. From the experimental results, the average
running time of the complete search approach to solve a 10 × 10 instance is 149 751.257 ms,
while the average running time of the prune-and-search method to solve instances of the same
sizes is 311.954. This means the prune-and-search method is approximately 480 times faster than
the complete search approach for solving 10 × 10 instance. We summarize the running times of
the prune-and-search algorithm in Table I.

Size Number of Test Case Minimum Running Time Maximum Running Time Average Running Time

10× 10 96 < 0.001 8 890.000 311.954
12× 12 101 1.000 446 216.000 24 107.947
15× 15 25 9.000 576 323.000 158 473.267

TABLE I: The running time (in milliseconds) for solving Tilepaint instance using the prune-and-
search algorithm.

IX. CONCLUSION AND FUTURE WORKS

In this research, we present an algorithm to verify whether a Tilepaint configuration of size m×n
containing p tiles satisfies the puzzle rules with a time complexity of O(mn). We also propose
two elementary search-based algorithms, the complete search and prune-and-search algorithms, for
solving an arbitrary Tilepaint puzzle. In Theorem 4 and Theorem 5, we prove that the running time
of the complete search and prune-and-search technique for solving an m × n Tilepaint instance
with p tiles are respectively O(2p · p ·mn) and O(2p ·mn), which implies that the latter method
is asymptotically faster by a factor of p. We have also conducted an experiment to measure
the performance of our proposed algorithms using test cases from [37]. The prune-and-search
algorithm successfully solved all test cases of size 10×10 and 12×12, and some of the test cases
of size 15 × 15. However, the complete search approach can only solve some test cases of size
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10 × 10. Experimental results also show that the prune-and-search method are about 480 times
faster than the complete-search method in solving some 10× 10 instances.

We also address tractable and intractable variants of Tilepaint puzzles. The tractable variants
of the Tilepaint puzzles resemble two-dimensional discrete tomography problems with complete
information, where an m × n Tilepaint instance consists of mn tiles (i.e., all tiles are of size
1×1). These variants can be solved using a greedy algorithm with an asymptotic running time of
O(mn logm+n log n). The asymptotic upper bound for this algorithm can be made O((mn) by
using a linear time sorting algorithm, such as counting sort. We also prove that solving the general
one-dimensional Tilepaint puzzle is NP-complete. Lemma 1 provides a polynomial-time reduction
from the subset-sum problem to solving a one-dimensional Tilepaint. We prove that a subset-sum
instance has a solution if and only if its corresponding one-dimensional Tilepaint instance has a
solution.

Considering Tilepaint puzzles are NP-complete, we suggest exploring SAT-based solvers to
solve the puzzle. The SAT-based technique is highly effective in solving another NP-complete
puzzle such as Sudoku [18], [19], and we believe it could be applied to solving Tilepaint puzzles.
Moreover, modifying the solver to find all possible solutions to a Tilepaint puzzle may provide
some insights into the counting complexity of Tilepaint puzzles.
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