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Abstract
Tatamibari is a puzzle that was first published in 2004 and was proven to be NP-complete
in 2020. However, to the best of our knowledge, algorithmic investigation of the Tatamibari
puzzle is relatively new and limited. There are discussions about an approach for solving the
Tatamibari puzzle using the Z3 SMT solver, but this solver requires an additional library that
cannot be directly executed using standard libraries in an arbitrary imperative programming
language. Hence, this paper discusses an exhaustive search approach for solving an arbitrary
Tatamibari puzzle. We show that this algorithm can find all solutions to an m×n Tatamibari
instance with h hints in O(max{m2n2, hmn−h · hmn}) time. We also use this algorithm to
find the number of possible Tatamibari solutions in an m× n grid for some small values of
m and n.

Keywords: Asymptotic Analysis, Exhaustive Search Algorithm, NP-Complete Problems,
Puzzle Solver, Tatamibari Puzzle

Abstrak
Tatamibari merupakan suatu teka teki yang pertama kali diperkenalkan pada tahun 2004
dan telah dibuktikan termasuk ke dalam permasalahan NP-complete pada tahun 2020. Akan
tetapi, sepanjang pengetahuan kami, investigasi algoritmik terkait teka teki ini masih sa-
ngat sedikit. Terdapat pembahasan mengenai penggunaan Z3 SMT solver untuk menyele-
saikan teka teki Tatamibari ini, namun solver ini menggunakan pustaka (library) yang tidak
dapat digunakan secara langung pada sembarang bahasa pemrograman imperatif. Dalam
artikel ini kami mendiskusikan algoritma pencarian menyeluruh (exhaustive search) untuk
memecahkan teka teki Tatamibari dan menunjukkan bahwa algoritma ini dapat mencari se-
mua solusi dari teka teki Tatamibari berukuran m × n yang memiliki h petunjuk dalam
waktu O(max{m2n2, hmn−h ·hmn}). Kami juga menggunakan algoritma ini untuk mencari
banyaknya solusi Tatamibari pada grid m× n untuk beberapa nilai m dan n yang kecil.

Kata Kunci: Algoritma Pencarian Menyeluruh, Analisis Asimtotik, Masalah NP-complete,
Pemecah Teka Teki, Teka Teki Tatamibari

I. INTRODUCTION

TATAMIBARI is a pencil-and-paper logic puzzle popularized by Nikoli, a puzzle magazine from Japan
that also popularized Sudoku. This puzzle—which was first published in 2004 [1] and inspired by

Japanese tatami mats—has recently been proven to be NP-complete in 2020 [2]. The NP-completeness
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proof of this puzzle establishes a Nikoli gap1 of 16 years, which is one of the longest for a pencil-and-
paper puzzle.

Tatamibari puzzle is a one-player pencil-and-paper game played on an m×n grid of cells where each
cell is either filled with the characters +, −, or |, or is empty. The characters +, −, and | are called
hints. The objective of the player is to partition the grid into several rectangles satisfying the following
criteria:

1) The rectangles do not overlap.
2) The union of all rectangles must cover all cells within the grid.
3) Every rectangle must contain exactly one hint (either +, −, or |) and satisfies the following

conditions:
a) a rectangle containing + must be a square (the number of rows and columns in this rectangle

are identical),
b) a rectangle containing − must have a greater width than height (the number of rows in this

rectangle is less than its number of columns),
c) a rectangle containing | must have a greater height than width (the number of rows in this

rectangle is more than its number of columns).
4) No rectangles share the same corner.
Puzzles are forms of entertainment that give a feeling of satisfaction to the player upon completing it [4].

Solving puzzles can help the player relax while developing visual processing and logical thinking skills.
Many puzzles also contain mathematical and computational aspects with connections to combinatorial and
computational problems. Numerous systematic studies have been conducted on the algorithmic aspects of
one-player puzzles (see [4]–[6] for extensive bibliography). Taken from [4], there have been many puzzles
that have been proven to be NP-complete, such as (in alphabetical order): Blocks World, Clickomania,
Corral Puzzle, Cross Sum, Cryptarithms, Instant Insanity, KPlumber, Lemmings, Light Up, Mastermind,
Minesweeper, n-Puzzle, Nurikabe (see also [7]), Pearl Puzzle, Peg Solitaire, Reflections, Rush Hour,
Shanghai, Slither Link, Sokoban, Solitaire, Spiral Galaxies, Sudoku (see also [8]), and Tetris. Other
one-player pencil-and-paper puzzles that have been proven to be NP-complete are: Country Road [9],
Dosun-Fuwari [10], Fillmat [11], Five Cells [12], Hashiwokakero [13], Herugolf [14], Heyawake [15],
Hiroimono [16], Juosan [17], Kurodoko [18], Kurotto [17], Makaro [14], Moon-or-Sun [19], Nagareru
[19], Nurimeizu [19], Ripple Effect [20], Shakashaka [21], Shikaku [20], Sto-Stone [3], Tatamibari [2],
Tilepaint [12], Usowan [22], Yajilin [9], Yin-Yang [23], and Yosenabe [24].

The NP-completeness of Tatamibari puzzles implies the existence of a polynomial time algorithm for
verifying whether an arbitrary m×n grid is also a Tatamibari solution.2 Furthermore, the NP-completeness
of the puzzles also infers the existence of an exponential time algorithm for solving an arbitrary m× n
Tatamibari puzzle with h hints. To our knowledge, algorithmic investigation of the Tatamibari puzzle
is relatively new and limited. Adler et al. [2], [25] and Bosboom [26] briefly discuss an approach for
solving the Tatamibari puzzle using the Z3 SMT solver, but the authors did not provide details regarding
the steps of the algorithm as well as its explicit asymptotic upper bound. Moreover, solving Tatamibari
puzzles using this solver requires an additional library that cannot be directly executed using standard
libraries in an arbitrary imperative programming language.

There are several approaches to solve NP-complete puzzles, such as using the integer programming
model [21], the SAT solver [27]–[31], or the SMT solver [25]. Here, we discuss the exhaustive search
technique as an elementary and explicit method for solving arbitrary Tatamibari puzzles. We provide an
explicit upper bound of the time complexity for finding all solutions to an arbitrary Tatamibari puzzle
and also prove that the solutions can be obtained in exponential time in terms of the number of hints
and the size of the puzzle.

Here, we present our systematic investigation of solving Tatamibari puzzles using an exhaustive search
approach, divided into four sections. We briefly summarize the NP-completeness of Tatamibari puzzles in
[2] and discuss the formal representation of Tatamibari instances, configurations, and solutions in Section

1According to [3], a Nikoli gap is the amount of time between the first publication of a Nikoli puzzle and its corresponding
hardness result.

2A Tatamibari solution is an m×n grid configuration that satisfies the four rules of the Tatamibari puzzle, the formal definition
of the Tatamibari solution is discussed in Definition 1.
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II. We provide an O(hmn) time algorithm for verifying whether an m×n Tatamibari configuration with
h hints is also a solution in Section III. Our main result of the paper is presented in Section IV and
it is shown that all solutions to an m × n Tatamibari instance with h hints can be obtained using an
O(max{m2n2, hmn−h · hmn}) algorithm. We implement our proposed algorithm in C++ programming
language and summarize some of its computational results in Section V. Finally, this paper is concluded
in Section VI.

II. PRELIMINARIES

In this section, we discuss related works about the NP-completeness of the Tatamibari puzzles that
have been proven in 2020 [2]. We also provide the definitions of instances, configurations, and solutions
for the Tatamibari puzzles.

A. NP-Completeness of Tatamibari Puzzles

The first rigorous proof regarding the NP-completeness of the Tatamibari puzzles is written by Adler
et al. in [2]. Here, the author first proved that the Tatamibari puzzle is NP-hard by a reduction from the
planar rectilinear monotone 3SAT problem. The planar rectilinear monotone 3SAT problem was proven
to be NP-hard by de Berg and Khosravi [32].

An instance of the planar rectilinear monotone 3SAT problem has a planar rectilinear drawing of
the clause-variable graph. Every variable is a horizontal segment on the x-axis and every clause is a
horizontal segment above or below the axis. Variables are connected to the clauses in which they appear
by rectilinear edges. Fig. 1 provides a rectilinear representation of a planar monotone 3SAT instance of
six variables x1, x2, . . . , x6.

Fig. 1: A rectilinear representation of a planar monotone 3SAT instance in [32].

To prove that the Tatamibari puzzle is NP-complete, Adler et al. first showed that the puzzle is NP-
hard. The authors discussed a reduction to the Tatamibari puzzle from the planar rectilinear monotone
3SAT problems. This reduction uses small partial instances of a Tatamibari puzzle, commonly referred
to as gadgets, to simulate certain objects in the planar rectilinear monotone 3SAT problems. The author
first introduced a general “gadget area hardness framework” to argue about the compilations of local
gadgets whose logical representation is characterized by area coverage. There are three types of gadget
construction used in the reduction, namely:

1) The construction of wire and terminator gadgets. According to [2], wire gadgets in a Tatamibari
instance consist of columns containing + hints surrounded by | hints which encode a truth value in
the parity of whether the cells are oriented with the + hints in their lower left or upper left corners;
while terminator gadgets are used to terminate unused wire gadgets regardless of their parity.
In a planar rectilinear monotone 3SAT instance, a wire connects two different clauses separated
horizontally.

2) The construction of variable gadgets. Variable gadgets in a Tatamibari instance are associated with
the variable in the planar rectilinear monotone 3SAT problems, which are expressed as x1, x2, . . ..
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3) The construction of clause gadgets. Clause gadgets in a Tatamibari instance are associated with the
clauses in the planar rectilinear monotone 3SAT problems, which are expressed as a disjunction of
several variables or their negations, such as x1 ∨ x5 ∨ x6.

Adler et al. constructed a reduction f that maps a planar rectilinear monotone 3SAT instance Φ to a
Tatamibari instance f(Φ) using the aforementioned gadgets and show that the following conditions are
satisfied:

1) if Φ consists of n variables and m clauses, then the size of f(Φ) is polynomial in n +m and it
can be computed in O(p(n+m)) time where p is a polynomial [2, Proposition 3.16];

2) an instance Φ of a rectilinear monotone 3SAT problem has a solution if and only if its corresponding
Tatamibari instance f(Φ) also has a solution [2, Proposition 3.17, Proposition 3.18].

The two previously mentioned results imply that Tatamibari puzzles are NP-hard. Moreover, since any
given Tatamibari solution can be checked in polynomial time (with respect to the size of the Tatamibari
board and the number of hints), we infer that Tatamibari puzzles are NP-complete. We discuss an explicit
polynomial time verification algorithm for checking whether arbitrary Tatamibari configurations are also
Tatamibari solutions in Section III.

B. Tatamibari Instances, Configurations, and Solutions

To discuss an algorithm that solves arbitrary Tatamibari instances, we first formalize the definition of
a Tatamibari instance, a Tatamibari configuration, and a Tatamibari solution.

Definition 1. An instance of a Tatamibari puzzle (or a Tatamibari instance) of size m×n is a rectangular
array (or board) of m rows and n columns such that:

1) a cell (i, j) is the intersection between row i and column j where 1 ≤ i ≤ m and 1 ≤ j ≤ n,
2) every cell (i, j) is either empty or is filled with precisely one character among +, −, and |.

We call the characters +, −, and | in a Tatamibari instance as hints. An m×n Tatamibari configuration
is an m × n two-dimensional array such that every cell (i, j) is filled with a string of the form
⟨symbol⟩⟨number⟩, where ⟨symbol⟩ is either +, −, or | and ⟨number⟩ is an integer between 1 and h
(inclusive) where h denotes the number of hints in the Tatamibari instance. The string ⟨symbol⟩⟨number⟩
is abbreviated by id and is called the identity of a cell. A Tatamibari solution is a Tatamibari configuration
that satisfies the four rules of the Tatamibari puzzle.

We illustrate examples of Tatamibari instances and a Tatamibari solution in Fig. 2. Fig. 2a is an example
of a Tatamibari instance of size 4 × 4 and seven hints. For algorithmic purposes, we put a number in
each hint. The hints are numbered from left to right and top to bottom fashion. The numbered Tatamibari
instance in Fig. 2a is shown in Fig. 2b. One solution to the Tatamibari puzzle in Fig. 2a is given in Fig.
2c. In this solution, different regions are separated by thick lines and have different shades of colors.

−
− |

− |
+ −

(a) A 4× 4 Tatamibari instance.

−1

−2 |3
−4 |5
+6 −7

(b) A 4 × 4 Tatamibari instance
with numbered hints.

−
− |

− |
+ −

(c) A solution for the Tatamibari
puzzle in Fig. 2a.

Fig. 2: Examples of a Tatamibari instance, a Tatamibari instance with numbered hints, and a solution to
a Tatamibari puzzle. Fig. 2a is a 4× 4 Tatamibari instance. Fig. 2b is obtained from the instance in Fig.
2a by adding a number to every hint. Fig. 2c is a solution to the Tatamibari puzzle in Fig. 2a.

Definition 1 allows us to conveniently represents every Tatamibari instance, configuration, and solution
using a two-dimensional array. An illustration regarding this representation is given in Fig. 3. In general,
any Tatamibari instance can be represented using a two-dimensional array of size m × n where each
entry of the array is either ∗, +, −, or |, where ∗ denotes an empty cell. Using this convention, the
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Tatamibari instances in Fig. 2a and Fig. 2b and the Tatamibari solution in Fig. 2c can be respectively
represented using the arrays in Fig. 3a, Fig. 3b, and Fig. 3c. In addition, Definition 1 also tells that every
Tatamibari solution is also a Tatamibari configuration, but not vice versa. Several examples of Tatamibari
configurations that are not Tatamibari solutions are given in Fig. 4.

∗ ∗ − ∗
∗ − ∗ |
− ∗ | ∗
+ − ∗ ∗

(a) An array that corresponds to
the Tatamibari instance depicted in
Fig. 2a.

∗ ∗ −1 ∗
∗ −2 ∗ |3
−4 ∗ |5 ∗
+6 −7 ∗ ∗

(b) An array for the Tatamibari
instance with numbered hints de-
picted in Fig. 2b.

−1 −1 −1 −1
−2 −2 |5 |3
−4 −4 |5 |3
+6 −7 −7 |3

(c) An array for the Tatamibari
solution depicted in Fig. 2c.

Fig. 3: Several two-dimensional array representations of a Tatamibari puzzle.

−1 −1 −1 −1

−2 −2 |5 |3
−4 −4 |5 |3
+6 −7 |5 |3

(a) The shape of the region of iden-
tity −7 is a square.

−1 −1 −1 −1

−2 −2 −3 −3

+4 +4 +5 +5

+4 +5 +5 +5

(b) There is a grid dot that is shared by four
different regions.

Fig. 4: Two Tatamibari configurations which are not solutions to any Tatamibari instances.

III. POLYNOMIAL TIME ALGORITHM FOR VERIFYING TATAMIBARI SOLUTIONS

We develop a polynomial time algorithm for verifying whether a Tatamibari configuration is also a
Tatamibari solution. We refer to this algorithm as the Tatamibari solution verifier. This algorithm uses
0-based index convention for arrays and lists. Therefore, the top-leftmost cell in a Tatamibari board is
mapped into a cell (0, 0) in its two-dimensional array B representing the board. This algorithm takes
an m × n two-dimensional array as input. Moreover, every cell in this array is a string of the form
⟨symbol⟩⟨number⟩ called identity, abbreviated as id. In other words, the algorithm takes a Tatamibari
configuration as an input. Our proposed Tatamibari solution verifier algorithm consists of three main
parts, namely: a procedure to create a list of identities, a procedure to check the region of each identity,
and a procedure to check the non-existence of a corner that is shared by four different regions.

A. Creating a List of Identities

Suppose we consider a Tatamibari configuration represented in an array B of size m× n. We define
a function IDENTITY-LIST(B,m, n) to find all identities in B of size m× n as well as the information
regarding the first cell and the last cell of each identity in row-major order and stores these data in a
(dynamic) list L. We denote the first cell of a particular identity with (r1, c1) and its corresponding last
cell by (r2, c2). This step is described in Algorithm 1.
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Algorithm 1 IDENTITY-LIST(B,m, n) creates a list containing the identities as well as the first and the last cell
of such identities in row-major order in a Tatamibari configuration B of size m× n.

Input: A two-dimensional array B of size m× n whose entries are of the form ⟨symbol⟩⟨number⟩.
Output: A list L containing triples of the form (id, (r1, c1), (r2, c2)) where (r1, c1) and (r2, c2) are correspondingly

the first and the last cells of the identity id in row-major order.
1: i← 0, L← an empty list
2: while i < m do
3: j ← 0
4: while j < n do
5: if B[i][j] is not in L then
6: r1, r2 ← i
7: c1, c2 ← j
8: add (B[i][j], (r1, c1), (r2, c2)) to L
9: else

10: update (r2, c2) with (i, j) for corresponding identity in B[i][j]
11: end if
12: j ← j + 1
13: end while
14: i← i+ 1
15: end while
16: return L

Observe that the maximum number of iterations in lines 2–15 of Algorithm 1 is mn. In this algorithm
and many algorithms that follow, we use a dynamic list3 L whose amortized time complexity for adding
an element is constant, see [33]–[35] for details. Thus, the step to add the triple (B[i][j], (r1, c1), (r2, c2))
to L in line 8 takes an amortized O(1) time. Therefore, the asymptotic upper bound for the running time
of Algorithm 1 is O(mn).

B. Checking the Region’s Shape of Each Identity

Suppose we consider a Tatamibari configuration B of size m × n. Every identity of a cell in this
configuration has the form ⟨symbol⟩⟨number⟩ where ⟨symbol⟩ is either +, −, or |, and ⟨number⟩ is an
integer between 1 and h (inclusive) where h is the number of hints in the puzzle. The shape of each region
which is a collection of the cells with the same identity must correspond to the hint symbol, that is: if
the identity is +⟨number⟩, then the shape of the region must be a square; if the identity is −⟨number⟩,
then the shape of the region must be a rectangle whose number of columns is greater than its number of
rows; and if the identity is |⟨number⟩, then the shape of the region must be a rectangle whose number
of rows is greater than its number of columns. For example, the region which is a collection of the cells
with identity −1 must be a rectangle and the number of columns in this rectangle is greater than its
number of rows.

To check the shape of each region which is a collection of the cells with the same identity id, we
perform the following steps. First, we determine the first and the last cells that are filled with the identity
id, suppose these cells are respectively denoted by (r1, c1) and (r2, c2). The shape of the region can
be determined by computing the values ∆r = r2 − r1 and ∆c = c2 − c1. If id corresponds to the hint
symbol +, then ∆r = ∆c must true; if id corresponds to the hint symbol −, then ∆r < ∆c must hold;
and if id corresponds to the hint symbol |, then ∆r > ∆c must be satisfied. In addition, if the first and
the last cells that are filled with the identity id in row-major format are respectively (r1, c1) and (r2, c2),
then the identity of every cell (r, c) satisfying r1 ≤ r ≤ r2 and c1 ≤ c ≤ c2 is also id. This process is
summarized in Algorithm 2. Here, the identity id is denoted using an array of length two, id[0] stores
the symbol while id[1] stores the number. For instance, if id = |2, then id[0] = | and id[1] = 2.

3In practice, this list can be represented using a vector data structure in C++ or a list data structure in Python.
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Algorithm 2 VALID-SHAPES(B,m, n, id, r1, c1, r2, c2) checks whether the shape of a region which is a collection
of all cells with identity id meets the rules of Tatamibari puzzle (represented as an array B of size m×n). The cell
(r1, c1) is the top-leftmost cell with identity id while the cell (r2, c2) is the bottom-rightmost cell with identity id.

Input: A two-dimensional array B of size m × n whose entries are of the form ⟨symbol⟩⟨number⟩, an identity
value id, the cell (r1, c1) denoting the first cell that is filled with id, and the last cell (r2, c2) denoting the last
cell that is filled with id. The cells are checked in row-major order.

Output: The procedure returns true if the region which is a collection of all cells with identity id satisfies the
Tatamibari rules according to its hint symbol; otherwise it returns false.

1: ∆r = r2 − r1; ∆c = c2 − c1
2: if (id[0] = − and (∆r ≥ ∆c)) or (id[0] = | and (∆r ≤ ∆c)) or (id[0] = + and (∆r ̸= ∆c)) then
3: return false ▷ the shape of the region does not concur with the hint symbol
4: else
5: i← 0
6: while i < m do
7: j ← 0
8: while j < n do
9: if (i < r1 or i > r2 or j < c1 or j > c2) and B[i][j] = id then

10: return false ▷ there is a cell with identity id outside the rectangle
11: end if
12: if (i ≥ r1 and i ≤ r2 and j ≥ c1 and j ≤ c2) and B[i][j] ̸= id then
13: return false ▷ there is a cell within the rectangle whose identity is different from id
14: end if
15: j ← j + 1
16: end while
17: i← i+ 1
18: end while
19: end if
20: return true

Observe that the maximum number of iterations in lines 6–18 of Algorithm 2 is mn. Therefore, the
asymptotic upper bound for the running time of Algorithm 2 is O(mn).

C. Checking the Non-existence of a Corner that is Shared by Four Different Regions

One of the rules of the Tatamibari puzzles states that a corner cannot be shared by four different
regions. Formally, suppose we have four adjacent cells (r, c), (r, c + 1), (r + 1, c), and (r + 1, c + 1)
within the board, where each cell respectively has the identity id1, id2, id3, and id4. This rules states
that id1, id2, id3, and id4 cannot be all distinct. In other words, at least two of these four identities must
be identical. We describe the algorithm to check such a condition in Algorithm 3.

Algorithm 3 VALID-CORNER(B,m, n) checks whether there is a corner that is shared by four different regions
in a Tatamibari configuration represented by an array B of size m× n.

Input: A two-dimensional array B of size m× n whose entries are of the form ⟨symbol⟩⟨number⟩.
Output: The function returns true if no corner is shared by four different regions, otherwise it returns false.

1: i← 0
2: while i < m− 1 do
3: j ← 0
4: while j < n− 1 do
5: if (B[i][j] ̸= B[i+1][j]) and (B[i][j] ̸= B[i][j+1]) and (B[i][j] ̸= B[i+1][j+1]) and(B[i+1][j] ̸=

B[i][j + 1]) and (B[i+ 1][j] ̸= B[i+ 1][j + 1]) and (B[i][j + 1] ̸= B[i+ 1][j + 1]) then
6: return false ▷ the cell (i, j), (i, j + 1), (i+ 1, j), and (i+ 1, j + 1) have different identities
7: end if
8: j ← j + 1
9: end while

10: i← i+ 1
11: end while
12: return true

Observe that the number of iterations in lines 2–11 of Algorithm 3 cannot be larger than mn. Therefore,
the asymptotic upper bound for the running time of Algorithm 3 is O(mn).
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D. Main Verification Algorithm

We describe the main function for verifying whether a Tatamibari configuration is also a solution in
Algorithm 4. This algorithm uses Algorithm 1, Algorithm 2, and Algorithm 3 as subroutines.

Algorithm 4 VERIFIER(B,m, n) checks whether an m×n array B of Tatamibari configuration is also a solution.

Input: A two-dimensional array B of size m× n representing a Tatamibari configuration.
Output: The function returns true if B is a Tatamibari solution, otherwise it returns false.

1: L← IDENTITY-LIST(B,m, n) ▷ using Algorithm 1 to find all identities in B
2: valid_solution← true
3: i← 0
4: while (i < length of L) and valid_solution do
5: id← identity of L[i]; r1 ← r1 of L[i]; c1 ← c1 of L[i]; r2 ← r2 of L[i]; c2 ← c2 of L[i]
6: valid_solution← VALID-SHAPES(B,m, n, id, r1, c1, r2, c2)
7: ▷ checking the shape of a region with identity id using Algorithm 2
8: i← i+ 1
9: end while

10: return (valid_solution and VALID-CORNER(B,m, n))

Notice that the asymptotic time complexity of Algorithm 4 can be determined as follows:
1) Line 1 executes the procedure FIND-IDENTITY described in Algorithm 1 whose running time is

O(mn).
2) Lines 4–9 is executed at most h times, where h is the number of identities. Each iteration executes

the procedure VALID-SHAPES described in Algorithm 2 whose running time is O(mn). Thus the
asymptotic time complexity of lines 4–9 is O(hmn).

3) Line 10 executes the function VALID-CORNER described in Algorithm 3 whose running time is
O(mn).

Therefore, assuming that h ≥ 1, the asymptotic upper bound for the running time of Algorithm 4 is
O(mn) +O(hmn) +O(mn) = O(hmn).

IV. EXHAUSTIVE SEARCH TECHNIQUE FOR SOLVING TATAMIBARI PUZZLES

This section discusses an algorithm for solving any arbitrary Tatamibari instances using an exhaustive
search technique. The instances are represented using two-dimensional array B of size m × n whose
entries are either +, −, |, or ∗, where ∗ signifies an empty cell as illustrated in Fig. 3a. The main
algorithm is divided into four major steps as follows:

1) a procedure to append a number to every hint,
2) a procedure to determine the possible identities (possible regions) of an empty cell,
3) a procedure to generate possible combinations of identities for all empty cells,
4) a procedure to construct a Tatamibari configuration from each of the possible combinations in step

3 and verify whether such a configuration satisfies four Tatamibari rules.

A. Appending a Number to Every Hint

Suppose we have a Tatamibari instance represented in a two-dimensional array B whose entries are
either +, −, |, or ∗, where ∗ signifies an empty cell as illustrated in Fig. 3a. To find the solution to this
Tatamibari instance, we firstly number every hint (i.e., the characters +, −, and |) in row-major order.
The combination of a hint and its corresponding number creates an identity that is used to determine
the region of an empty cell. The numbering process for every hint is performed by appending a number
to each hint as described in Algorithm 5. The output of this algorithm is a Tatamibari instance with
numbered hints as illustrated in Fig. 3b.
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Algorithm 5 IDFIER(B,m, n) appends a unique number to every hint in an array B of a Tatamibari instance of
size m× n.

Input: A two-dimensional array B of a Tatamibari instance whose characters are either +, −, |, or ∗, where ∗ ,
where ∗ denotes an empty cell.

Output: A two-dimensional array B of a Tatamibari instance with numbered hints. The numbering is performed in
row-major order.

1: x← 0 ▷ x is the hint number
2: i← 0
3: while i < m do
4: j ← 0
5: while j < n do
6: if B[i][j] ̸= ∗ then ▷ the cell is non-empty
7: x← x+ 1
8: B[i][j]← B[i][j] ∥ x ▷ concatenate the hint with a unique number to create a unique identity
9: end if

10: j ← j + 1
11: end while
12: i← i+ 1
13: end while
14: Return B

The purpose of Algorithm 5 is to provide a unique number to each hint. A concatenation of a hint
and its number is called an identity as described in Definition 1. The maximum value of such a number
also signifies the number of partitions in the solution to the corresponding Tatamibari instance (if any
solution exists). Observe that the maximum number of iterations in lines 3–13 of Algorithm 5 is mn.
Therefore, the asymptotic upper bound for the running time of Algorithm 5 is O(mn).

B. Determining the Possible Identities of an Empty Cell

Suppose we consider an empty cell (denoted by ∗) in a Tatamibari instance represented using a two-
dimensional array B. If we assume that this instance has a solution, then ∗ must be replaced by an identity
(i.e., a string of the form ⟨symbol⟩⟨number⟩). Observe that if the initial Tatamibari instance consists of
h > 1 hints, then there are at most h possible identities for replacing ∗. However, we can reduce the
number of possible identities that can replace ∗ using a simple observation. Notice that some identities
may not be eligible to replace an empty cell. For example, consider an 8 × 8 Tatamibari instance with
an empty cell at (3, 3), the cell (3, 6) with identity −3, and the cell (3, 7) with identity |4 as depicted
in Fig. 5a. It is obvious that the empty cell at (3, 3) cannot have the identity |4 because the cell (3, 7)
is blocked by the cell (3, 6) with identity −3.

We first describe the initial four steps to reduce the number of possible identities for an empty cell.
Suppose we consider an empty cell (x, y) in a Tatamibari instance of size m×n, we define the following
values:

1) minr: the row position such that (minr, y) contains an identity and the value x−minr is minimum;
if such an identity does not exist, then minr = −1;

2) maxr: the row position such that (maxr, y) contains an identity and the value maxr − x is
minimum; if such an identity does not exist, then maxr = m;

3) minc: the column position such that (x,minc) contains an identity and the value y − minc is
minimum; if such an identity does not exist, then minc = −1;

4) maxc: the column position such that (x,maxc) contains an identity and the value maxc − y is
minimum; if such an identity does not exist, then maxc = n.

The value minr, maxr, minc, and maxc provides an orthogonal perimeter for the possible identities
of an empty cell (x, y).

For an empty cell (x, y) in a Tatamibari instance of size m×n, minr denotes the row position of the
nearest identity located directly above and in the same column of the cell (x, y). The function to find
the value of minr given an empty cell (x, y) in a Tatamibari instance B of size m× n is described in
Algorithm 6. Initially, the minr is set to −1. This algorithm also uses the (dynamic) list L for storing
the possible identities of an empty cell (x, y). The output of this algorithm is a pair (minr, L) where L
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is the list of possible identities for the empty cell.

Algorithm 6 CHECK-ABOVE(B, x, y, L) returns the row position of an identity located directly above the empty
cell (x, y) in a Tatamibari instance B of size m × n as well as a list L containing such an identity. If such an
identity does not exist, the algorithm returns (−1, L) and L remains unchanged.

Input: A Tatamibari instance B, the location of the empty cell (x, y), and a list L containing all possible identities
for the cell (x, y).

Output: The pair (minr, L), here minr is the row index such that (minr, y) contains an identity (non-empty), is
located directly above (x, y), and the value x−minr is minimum, such an identity is also added to the list L;
if such an identity does not exist, the algorithm returns (−1, L) and L remains unchanged.

1: minr ← −1
2: i← x− 1
3: while i > −1 do
4: if B[i][y] ̸= ∗ then
5: minr ← i
6: add B[i][y] to L
7: break
8: end if
9: i← i− 1

10: end while
11: return (minr, L)

Fig. 5b provides an illustration of Algorithm 6 on the empty cell (3, 3). Here, the algorithm finds |1 as
the nearest cell located directly above (3, 3) containing an identity and sets minr = 1 since |1 is located
at the cell (1, 3). Notice that the worst-case scenario of Algorithm 6 happens when x = m − 1 and all
cells located above (x, y) are empty. Thus, assuming that the amortized time complexity for adding an
element to L in line 6 of Algorithm 6 takes O(1) time (as in the analysis of Algorithm 1), we infer that
the asymptotic upper bound for the running time of Algorithm 6 is O(m).

The function CHECK-BELOW is defined analogously as the previous CHECK-ABOVE function. If (x, y)
is an empty cell in a Tatamibari instance of size m × n, maxr denotes the row position of the nearest
identity located directly below and in the same column of the cell (x, y). The CHECK-BELOW function
stores the possible identities of an empty cell (x, y) in a (dynamic) list L. This function takes a tuple
(B, x, y, L) as an input and returns a pair (maxr, L) such that maxr is the row index of an identity
located directly below the empty cell (x, y) in a Tatamibari instance B of size m×n such that x−maxr
is minimum. Here L is a list containing possible identities for the empty cell. Initially, the value maxr
is set to m. If there is no cell located directly below (x, y) containing any identity, then the function
returns a pair (m,L) where L remains unchanged.

Fig. 5c illustrates CHECK-BELOW function on the empty cell (3, 3). Here, the function does not find
any cell containing any hint located directly below (3, 3). As a result, it sets maxr = 8. Notice that the
worst-case scenario of CHECK-BELOW function happens when x = 0 and all cells located below (x, y)
are empty. Thus, the asymptotic upper bound for the running time of this function is O(m).

To define the leftmost perimeter of an empty cell we use the variable minc. Here, minc signifies the
column position of the nearest identity located directly to the left and in the same row of an empty cell
(x, y) in a Tatamibari instance B of size m×n. We define CHECK-LEFT as a function that takes a tuple
(B, x, y, L) as an input and returns a pair (minc, L) such that y − minc is minimum and (x,minc)
contains a hint. As in the previous CHECK-ABOVE and CHECK-BELOW functions, CHECK-LEFT function
uses a (dynamic) list L containing possible identities for (x, y). At first, the value minc is set to 0. If
there is no cell located directly to the left of (x, y) containing any identity, then the function returns a
pair (0, L) where L remains unchanged.

Fig. 5d depicts an illustration of CHECK-LEFT function on the empty cell (3, 3). In this case, the
function does not find any cell containing any hint located directly to the left of (3, 3). Hence, it sets
minc = −1. Observe that the worst-case scenario of this function happens when y = n − 1 and all
cells located to the left of (x, y) are empty. Thus, the asymptotic upper bound for the running time of
CHECK-LEFT function is O(n).

To determine the rightmost perimeter of an empty cell we use the variable maxc. This variable
represents the column position of the nearest identity located directly to the right and in the same row of
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an empty cell (x, y) in a Tatamibari instance B of size m×n. Analogous to the CHECK-LEFT function,
we define CHECK-RIGHT as the function that takes a tuple (B, x, y, L) and returns a pair (maxc, L) such
that (x,maxc) contains an identity and the value y −maxc is minimum. As in the previous CHECK-
ABOVE, CHECK-BELOW, and CHECK-LEFT functions, this function also stores the possible identities
of an empty cell (x, y) in a (dynamic) list L. Initially, the value of maxc is set to n. If there is no
cell located directly to the right of (x, y) with any identity, then CHECK-RIGHT function returns (n,L)
where L remains unchanged.

Fig. 5e demonstrates CHECK-RIGHT function on the empty cell (3, 3). The function finds the cell (3, 6)
with identity −3 as the nearest cell located directly to the right of (3, 3) and thus it sets maxc = 6. It
also adds −3 to the list L. Notice that the worst-case scenario of CHECK-RIGHT function happens when
y = 0 and all cells located to the right of (x, y) are empty. Thus, the asymptotic upper bound for the
running time of this function is O(n).

The functions CHECK-ABOVE, CHECK-BELOW, CHECK-LEFT, and CHECK-RIGHT are independent
of one another and they can be performed in any order. In Fig. 5, we illustrate the execution of these
functions in sequential order.
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+5 −6

|7
−8

+9

(a) We consider an empty cell (3, 3).
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∗ −3 |4
+5 −6
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(b) Algorithm 6 finds |1, adds |1 to the list L,
and sets minr = 1.
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|7
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(c) The CHECK-BELOW function does not find
anything below ∗ and sets maxr = 8.
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(d) The CHECK-LEFT function does not find
anything on the left and sets minc = −1.
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+5 −6

|7
−8
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(e) The CHECK-RIGHT functions finds −3,
adds −3 to the list L, and sets maxc = 6.

Fig. 5: Visualization of the CHECK-ABOVE, CHECK-BELOW, CHECK-LEFT, and CHECK-RIGHT on cell
(3, 3). Here, we use 0-based indexing for the array B representing the Tatamibari board.
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The values minr, maxr, minc, and maxc provide an orthogonal perimeter for an empty cell (x, y).
We have a rectangle whose corners are (minr,minc) (top-left corner), (minr,maxc) (top-right corner),
(maxr,minc) (bottom-left corner), and (maxr,maxc) (bottom-right corner). We restrict our investigation
of possible identities for (x, y) in this rectangle. Moreover, to further limit the number of possible identities
for this empty cell, in general, we consider four smaller regions as follows:

1) the top-right area, i.e., all cells within the rectangle whose corners are (minr + 1, y + 1) (top-
left corner), (minr + 1,maxc − 1) (top-right corner), (x − 1, y + 1) (bottom-left corner), and
(x− 1,maxc− 1) (bottom-right corner);

2) the bottom-right area, i.e., all cells within the rectangle whose corners are (x + 1, y + 1) (top-
left corner), (x + 1,maxc − 1) (top-right corner), (maxr − 1, y + 1) (bottom-left corner), and
(maxr − 1,maxc− 1) (bottom-right corner);

3) the bottom-left area, i.e., all cells within the rectangle whose corners are (x+ 1,minc+ 1) (top-
left corner), (x + 1, y − 1) (top-right corner), (maxr − 1,minc + 1) (bottom-left corner), and
(maxr − 1, y − 1) (bottom-right corner);

4) the top-left area, i.e., all cells within the rectangle whose corners are (minr+1,minc+1) (top-left
corner), (minr+1, y−1) (top-right corner), (x−1,minc+1) (bottom-left corner), and (x−1, y−1)
(bottom-right corner).

We describe the function CHECK-TOP-RIGHT to find all possible identities of an empty cell (x, y) in
its associated top-right area in Algorithm 7. This algorithm requires the position of an empty cell (x, y)
as well as the corresponding minr and maxc values respectively obtained from CHECK-ABOVE and
CHECK-RIGHT functions.

Algorithm 7 CHECK-TOP-RIGHT(B, x, y,minr,maxc, L) finds all possible identities in the corresponding top-
right area of an empty cell (x, y).

Input: A Tatamibari instance B, the location of the empty cell (x, y), the value minr from CHECK-ABOVE function,
the value maxc from CHECK-RIGHT function, and a list L containing all possible identities for the cell (x, y).

Output: An updated list L containing all possible identities for the cell (x, y). The identities are obtained from the
top-right area associated with (x, y).

1: ℓ← maxc
2: i← x− 1
3: while i > minr do
4: j ← y + 1
5: while j < ℓ do
6: if B[i][j] ̸= ∗ then
7: add B[i][j] to L
8: ℓ← j
9: break

10: end if
11: j ← j + 1
12: end while
13: i← i− 1
14: end while
15: return L

Fig. 6 depicts an illustration of Algorithm 7 on the empty cell (3, 3). The algorithm checks all possible
identities in the top-right area associated with the empty cell (3, 3), namely the cells (2, 4) and (2, 5). In
general, the cells are visited in a left-to-right and bottom-up fashion. The variable ℓ is used to minimize
the number of cells that must be visited in a left-to-right and bottom-up approach. Initially, ℓ is set to
maxc, and if the algorithm finds a non-empty cell, the value ℓ is updated with the column position of
this non-empty cell. Observe that the worst-case scenario of Algorithm 7 happens when x = m − 1,
y = 0, minr = −1, maxc = n− 1, and all cells located in the top-right area of (x, y) are empty. Thus,
assuming that the amortized time complexity for adding an element to L in line 7 of Algorithm 7 takes
O(1) time (as in the Analysis of Algorithm 1 and Algorithm 6), we infer that the asymptotic upper bound
for the running time of Algorithm 7 is O(mn).

The function CHECK-BOTTOM-RIGHT is defined analogously and it is used to find all possible
identities of an empty cell (x, y) in its associated bottom-right area. This function requires the position
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Fig. 6: Visualization of Algorithm 7 on (3, 3). It checks all cells in the top-right rectangle associated
with the cell (3, 3) in a left-to-right and bottom-up fashion. No identities are added to the list L.

of an empty cell (x, y) as well as the corresponding maxr and maxc values respectively obtained from
CHECK-BELOW and CHECK-RIGHT functions.

Fig. 7 illustrates the working of CHECK-BOTTOM-RIGHT function on the empty cell (3, 3). This
function checks all possible identities in the bottom-right area associated with the empty cell (3, 3).
There are four outermost iterations of this function because maxr = 8 and initially we inspect row 4.
These iterations are consecutively illustrated in Fig. 7a, Fig. 7b, Fig. 7c, and Fig. 7d. Here, the cells are
visited in a left-to-right and top-down approach. In the first iteration, the function checks cells (4, 4) and
(4, 5) and finds no identities at such cells. In the second iteration, the function checks cells (5, 4) and
(5, 5) and finds |7 at cell (5, 5). Thus, the list L is added with |7. The third iteration only inspects cell
(6, 4) because any identity in cell (6, 5) is block by |7 at cell (5, 5). Similarly, the last iteration checks
only the cell (7, 4).

Observe that the worst-case scenario of function CHECK-BOTTOM-RIGHT happens when x = 0, y = 0,
maxr = m− 1, maxc = n− 1, and all cells located in the bottom-right area of (x, y) are empty. Thus,
as the time complexity of CHECK-TOP-RIGHT function, the asymptotic upper bound for the running
time of this function is O(mn).

We define the function CHECK-BOTTOM-LEFT to find all possible identities of an empty cell (x, y)
in its associated bottom-left area as an analog of CHECK-TOP-RIGHT and CHECK-BOTTOM-RIGHT
functions. This function requires the position of an empty cell (x, y) as well as the corresponding maxr
and minc values respectively obtained from CHECK-BELOW and CHECK-LEFT functions.

Fig. 8 depicts the working of CHECK-BOTTOM-LEFT function on the empty cell (3, 3). The function
checks all possible identities in the bottom-left area associated with the empty cell (3, 3). The cells are
visited in a right-to-left and top-down fashion. There are four outermost iterations of this function because
maxr = 8 and initially we inspect row 4. The first, the second, and the third iterations are respectively
illustrated in Fig. 8a, Fig. 8b, and Fig. 8c. In the first iteration illustrated in Fig. 8a, the function finds
+5 in cell (4, 0), adds +5 to L, and sets the column limit for the next iteration to 1. The second iteration
illustrated in Fig. 8b checks the cells (5, 1) and (5, 2). Here, no identities are added to the list L. The
third iteration is depicted in Fig. 8c where the function finds −8 in cell (6, 2) and sets the column limit to
2. The last iteration does not check any cell. A the end of the iteration, CHECK-BOTTOM-LEFT function
adds +5 and −8 to the list L.

Observe that the worst-case scenario of CHECK-BOTTOM-LEFT function happens when x = 0, y =
n−1, maxr = m−1, minc = −1, and all cells located in the bottom-left area of (x, y) are empty. Thus,
as in the time complexity analysis of CHECK-TOP-RIGHT and CHECK-BOTTOM-RIGHT functions, the
asymptotic upper bound for the running time of this function is O(mn).

Ind. Journal on Computing Vol. 7, Issue. 3, December 2023 65



|1
−2

∗ −3 |4
+5 −6

|7
−8

+9

(a) Visualization of the first iteration for the
outermost loop of CHECK-BOTTOM-RIGHT
function. No identities are added to the list L.
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(b) Visualization of the second iteration for the
outermost loop of CHECK-BOTTOM-RIGHT
function. It finds |7 at (5, 5) and adds it to
the list L.
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(c) Visualization of the third iteration for the
outermost loop of CHECK-BOTTOM-RIGHT
function. No identities are added to the list L.
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(d) Visualization of the fourth iteration for the
outermost loop of CHECK-BOTTOM-RIGHT
function. No identities are added to the list L.

Fig. 7: Visualization of CHECK-BOTTOM-RIGHT function on the empty cell (3, 3). Here, CHECK-TOP-
RIGHT function is completed before CHECK-BOTTOM-RIGHT function is executed.
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(a) Visualization of the first iteration for
the outermost loop of CHECK-BOTTOM-LEFT
function. It finds +5 and adds it to the list L.
The column limit is set to 1.
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(b) Visualization of the second iteration for the
outermost loop of CHECK-BOTTOM-LEFT. No
identities are added to the list L.
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(c) Visualization of the third iteration for the
outermost loop of CHECK-BOTTOM-LEFT. It
finds the identity −8 and adds it to the list L.
The column limit is set to 2.

Fig. 8: Visualization of CHECK-BOTTOM-LEFT on the empty cell (3, 3). Here, CHECK-TOP-RIGHT and
CHECK-BOTTOM-RIGHT functions are completed before CHECK-BOTTOM-LEFT function is executed.
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To find all possible identities of an empty cell (x, y) in its associated top-left area we define the function
CHECK-TOP-LEFT which is slightly adapted from the previous CHECK-TOP-RIGHT, CHECK-BOTTOM-
RIGHT, and CHECK-BOTTOM-LEFT functions. This function requires the position of an empty cell
(x, y) as well as the corresponding minr and minc values respectively obtained from CHECK-ABOVE
and CHECK-LEFT functions.

Fig. 9 depicts the working of CHECK-TOP-LEFT function on the empty cell (3, 3). It checks all
possible identities in the top-left area associated with the empty cell (3, 3), namely the cells (2, 0), (2, 1),
and (2, 2). The cells are inspected in a right-to-left and bottom-up way. In Fig. 9, only one iteration is
performed. In this iteration, the algorithm finds −2 in cell (2, 1) and adds it to the list L. Observe that the
worst-case scenario of CHECK-TOP-LEFT function happens when x = m− 1, y = n− 1, minr = −1,
minc = −1, and all cells located in the top-left area of (x, y) are empty. Thus, as in the complexity
analysis of CHECK-TOP-RIGHT, CHECK-BOTTOM-RIGHT, and CHECK-BOTTOM-LEFT functions, the
asymptotic upper bound for the running time of this function is O(mn).
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Fig. 9: Visualization of CHECK-TOP-LEFT function on the cell (3, 3). It finds −2 in its only iteration of
the outermost loop and adds it to the list L. Here, CHECK-TOP-RIGHT, CHECK-BOTTOM-RIGHT, and
CHECK-BOTTOM-LEFT functions are completed before CHECK-TOP-LEFT function is executed.

The functions CHECK-TOP-RIGHT, CHECK-BOTTOM-RIGHT, CHECK-BOTTOM-LEFT, and CHECK-
TOP-LEFT are independent of one another and they can be carried out in any order. However, all of
these functions must be executed after the functions CHECK-ABOVE, CHECK-BELOW, CHECK-LEFT,
and CHECK-RIGHT are completed. Moreover, to minimize the number of cells that must be checked
horizontally, we use the variable ℓ as in Algorithm 7 that is updated whenever we find an identity in
a row-based traversal. The process to find a list L of possible identities for an empty cell (x, y) is
summarized in Algorithm 8. From previous discussion, the functions CHECK-ABOVE, CHECK-BELOW,
CHECK-LEFT, and CHECK-RIGHT respectively return the tuples (minr, L), (maxr, L), (minc, L), and
(maxc, L).

Algorithm 8 CHECK-POSSIBLE-REGION(B, x, y) finds all possible identities of an empty cell (x, y) using
the functions CHECK-ABOVE, CHECK-BELOW, CHECK-LEFT, CHECK-RIGHT, CHECK-TOP-RIGHT, CHECK-
BOTTOM-RIGHT, CHECK-BOTTOM-LEFT, and CHECK-TOP-LEFT in sequential order.

Input: A Tatamibari instance B of size m× n and the location of the empty cell (x, y).
Output: A list L containing all possible identities for the cell (x, y).

1: L← an empty list
2: (minr, L)← CHECK-ABOVE(B, x, y, L)
3: (maxr, L)← CHECK-BELOW(B, x, y, L)
4: (minc, L)← CHECK-LEFT(B, x, y, L)
5: (maxc, L)← CHECK-RIGHT(B, x, y, L)
6: L← CHECK-TOP-RIGHT(B, x, y,minr,maxc, L)
7: L← CHECK-BOTTOM-RIGHT(B, x, y,maxr,maxc, L)
8: L← CHECK-BOTTOM-LEFT(B, x, y,maxr,minc, L)
9: L← CHECK-TOP-LEFT(B, x, y,minr,minc, L)

10: return L

The asymptotic upper bound for the running time of Algorithm 8 is described in Lemma 1.
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Lemma 1. The asymptotic upper bound for the running time of Algorithm 8 for an empty cell (x, y)
within a Tatamibari instance B of size m× n is O(mn).

Proof. Notice that Algorithm 8 consecutively calls the procedure CHECK-ABOVE,CHECK-BELOW, CHECK-
LEFT, CHECK-RIGHT, CHECK-TOP-RIGHT, CHECK-BOTTOM-RIGHT, CHECK-BOTTOM-LEFT, and CHECK-
TOP-LEFT. From the previous analyses, we have the asymptotic upper bound for each of these algo-
rithms is O(m), O(m), O(n), O(n), O(mn), O(mn), O(mn), O(mn) (resp.). Hence, with assumption
that m,n > 1, the asymptotic upper bound for Algorithm 8 is

O(max{m,m, n, n,mn,mn,mn,mn}) = O(mn).

C. Generating Possible Combinations of Identities for All Empty Cells

In this section, we describe a method to generate all possible combinations of identities (possible
regions) for every empty cell in a Tatamibari instance. We first describe Algorithm 9 that takes an
arbitrary Tatamibari instance B and returns the list E containing the positions of all empty cells in B as
well as the list H such that H[i] comprises all possible identities for the i-th empty cell (using 0-based
index convention). Here, the lengths of E and H are identical to the number of empty cells (namely,
mn− h).

Algorithm 9 POSSIBLE-EMPTY(B) returns a pair (E,H) such that E is a list containing the positions of all empty
cells in B and H is a list describing the possible identities for all empty cells.

Input: A Tatamibari instance B of size m× n.
Output: A pair (E,H) such that E is a list that contains the positions of all empty cells in B and H is a list such

that H[i] describes the possible identities of the i-th empty cell in 0-based index convention.
1: E ← an empty list
2: H ← an empty list
3: i← 0
4: while i < m do
5: j ← 0
6: while j < n do
7: if B[i][j] = ∗ then
8: add (i, j) to E ▷ E contains the locations of the empty cells in B
9: add CHECK-POSSIBLE-REGION(B,m, n, i, j) to H

10: ▷ H is updated with the list of possible identities for cell (i, j)
11: end if
12: j ← j + 1
13: end while
14: i← i+ 1
15: end while
16: return E
17: return H

In Algorithm 9 we assume that the (amortized) worst-case complexity for adding a pair (i, j) to the list
E in line 8 is O(1). This is consistent with the previous analysis of Algorithm 6 and Algorithm 7. For line
9, observe that CHECK-POSSIBLE-REGION(B,m, n, i, j) returns a list that contains at most h entries.
Hence, we assume that the (amortized) worst-case complexity for adding a list of possible identities
for cell (i, j) to H is O(h). Observe that, according to Lemma 1, the asymptotic upper bound for the
CHECK-POSSIBLE-REGION function in line 9 is O(mn). Thus the total time required to execute line 9
of Algorithm 9 that consists of Algorithm 8 and adding its return value to a list H is O(mn) +O(h) =
O(max{mn, h}) = O(mn), since h ≤ mn. Since the number of iterations for the innermost loop is n
and the number of iterations for the outermost loop is m, the asymptotic upper bound for Algorithm 9
is O((mn) · (mn)) = O(m2n2).

We illustrate the workings of Algorithm 9 using a Tatamibari instance in Fig. 10 as follows. In Fig.
10, the indices of the empty cells in row-major order are (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), and
(2, 1); thus we have:

E = [(0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1)] .
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The list H contains the lists of possible identities for every empty cell, that is, H[i] is a list of possible
identities for the i-th empty cell. Using Fig. 10 as an example, the 0-th empty cell is (0, 1), the 1-st empty
cell is (0, 2), and so on. Moreover, in this example, using the function CHECK-POSSSIBLE-REGION in
Algorithm 8, it is clear that every empty cell can be filled with either −1 or −2. Thus, we have:

H = [[−1,−2], [−1,−2], [−1,−2], [−1,−2], [−1,−2], [−1,−2], [−1,−2]] .

−1

−2

Fig. 10: An example of a 3× 3 Tatamibari instance.

Notice that to store E we need to store mn − h pairs of integers (i, j), thus the space requirement
for storing E is 2(mn− h) = O(mn). The space requirement for H is analyzed as follows. Notice that
H = [H[0], H[1], . . . ,H[e−1]] where e = mn−h denotes the number of empty cells in the board. Each
H[i] contains at most h entries of the form id = ⟨symbol⟩⟨number⟩. Assuming that each id requires
two characters, then H[i] contains at most 2h characters. Since H contains e entries of list, the space
requirement for H is bounded by 2h · e = 2h(mn− h) = O(hmn).

D. Constructing Tatamibari Configurations from Each of Possible Combinations

In this section, we discuss a method to construct Tatamibari configurations from each of the possible
combinations of identities for all empty cells. The algorithm takes the list H from Algorithm 9 as an
input. Suppose we consider a Tatamibari instance of size m× n with h hints. This Tatamibari instance
has e = mn − h empty cells, and we have H = [H[0], H[1], . . . ,H[e− 1]], where H[i] contains the
list of possible identities for the i-th empty cell. Each H[i] is at most of length h whose entries are
of the form id = ⟨symbol⟩⟨number⟩. Notice that, to generate a Tatamibari configuration from H , we
can choose exactly one entry of each H[i] where 0 ≤ i ≤ e − 1 and stores the chosen values in a list.
We define C as the list containing lists of possible identities whose entries are obtained from choosing
exactly one member of each H[i] where 0 ≤ i ≤ e − 1. For example, if we consider the Tatamibari
instance in Fig. 10, we have H = [[−1,−2], [−1,−2], [−1,−2], [−1,−2], [−1,−2], [−1,−2], [−1,−2]],
and thus an entry of C is a list whose components are constructed by taking exactly one member of
each H[i] for every 0 ≤ i ≤ 6. As an illustration, using the Tatamibari instance in Fig. 10, we obtain

C =
[
[−1,−1,−1,−1,−1,−1,−1], [−1,−1,−1,−1,−1,−1,−2],

[−1,−1,−1,−1,−1,−2,−1], . . . , [−1,−1,−1,−1,−1,−2,−2], . . . ,

[−1,−1,−2,−2,−2,−2,−2], . . . , [−2,−2,−2,−2,−2,−1,−2],

[−2,−2,−2,−2,−2,−2,−1], [−2,−2,−2,−2,−2,−2,−2]
]
.

(1)

In (1), the first entry of C is obtained by taking −1 from every H[i] for each 0 ≤ i ≤ 6, while the last
entry of C is obtained by taking −2 from every H[i] for each 0 ≤ i ≤ 6. We discuss an algorithm to
construct the list C from H in Algorithm 10, which is adapted from [36].

In Algorithm 10 we use a list indices such that indices[i] is used to track the current entry in each H[i]
for each 0 ≤ i ≤ e = mn−h. This algorithm stores the hints H[i][indices[i]] for all 0 ≤ i ≤ e = mn−h
in a temporary list config of size e. Notice that H[i][indices[i]] contains an identity id of the form
⟨symbol⟩⟨number⟩, and thus we assume that the amortized time complexity for adding H[i][indices[i]]
to config is O(1). Observe that at the i-th iteration of the for loop in lines 8-11, config is a list that is
updated with one possible identity for the i-th empty cell, and thus finally config = [id0, id1, . . . , ide−1]
where idk is a possible identity of the k-th empty cell (0 ≤ k ≤ e − 1). In line 12, the previous
list config obtained in lines 8-11 is added as an entry of C, here C contains several lists of possible
identities for all empty cells in the board. Notice that since config is of size e, adding config to
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C in line 12 takes at most O(e) amortized time. Moreover, when the algorithm terminates, we have
C = [config0, config1, . . . , configd] for some d ≤ he, such that configi = [idi,0, idi,1, . . . , idi,e−1]
where e = mn − h and idi,j denotes the possible identity for the j-th empty cell according to the i-th
configuration configi where 0 ≤ i ≤ d and 0 ≤ j ≤ e − 1. In other words, C is a list containing at
most he lists, where each list is of size e and the j-th entry of such a list represents a possible identity
for the j-th empty cell. This analysis also infers that the space requirement for C is bounded above by
e · he = (mn− h) · hmn−h = O(mn · hmn−h).

Algorithm 10 COMBINATION(H) creates a list containing lists of possible identities for all empty cells.

Input: A list H as described in the output of Algorithm 9.
Output: A list C containing lists of all possible identities for all empty cells, an entry of C is a list of size

e = mn− h and is associated with a unique Tatamibari configuration.
1: p← length of H ▷ here p = e = mn− h
2: C ← an empty list
3: for i← 0 to p− 1 do
4: indices[i]← 0 ▷ indices[i] helps us to track the current element in each H[i]
5: end for
6: while true do
7: i← 0
8: while i < p do
9: add H[i][indices[i]] to config ▷ adding a possible identity for the i-th empty cell to config

10: i← i+ 1
11: end while
12: add config to C ▷ storing possible configurations config to C
13: next← p− 1
14: while next ≥ 0 and indices[next] + 1 ≥ length of H[next]] do
15: next← next− 1
16: end while
17: if next < 0 then
18: return C
19: end if
20: indices[next] = indices[next] + 1
21: i← next+ 1
22: while i < p do
23: indices[i]← 0
24: i← i+ 1
25: end while
26: end while

The worst-case condition of this Algorithm 10 happens when each H[i] contains exactly h members,
which makes C comprises he lists of possible configurations. As an example, the list C obtained from the
Tatamibari instance in Fig. 10 contains 27 = 128 lists, where each list contains exactly seven members,
each member is either −1 or −2. Thus, the asymptotic upper bound for the running time of Algorithm
10 is O(he) = O(hmn−h). For related analysis regarding Algorithm 10, see, e.g., [37].

Each component of the list C corresponds to a unique Tatamibari configuration. For example, consider
the following possible entries of C for the Tatamibari instance given in Fig. 10:

C1 = [−1,−1,−1,−1,−1,−1,−1] ,

C2 = [−1,−1,−1,−1,−1,−2,−2] ,

C3 = [−1,−1,−2,−2,−2,−2,−2] ,

C4 = [−2,−2,−2,−2,−2,−2,−2] .

The lists C1, C2, C3, and C4 respectively correspond to the Tatamibari configurations in Fig. 11a, Fig.
11b, Fig. 11c, and Fig. 11d. From these configurations, only C2 and C3 are Tatamibari solutions.

E. Exhaustive Search Approach for Solving Arbitrary Tatamibari Instances

Our proposed exhaustive search-based Tatamibari solver algorithm is described in Algorithm 11. This
algorithm takes an arbitrary Tatamibari instance of size m × n as an input (represented as a two-
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−1 −1 −1

−1 −1 −1

−1 −1 −2

(a) The Tatamibari configuration that corre-
sponds to C1.

−1 −1 −1

−1 −1 −1

−2 −2 −2

(b) The Tatamibari configuration that corre-
sponds to C2.

−1 −1 −1

−2 −2 −2

−2 −2 −2

(c) The Tatamibari configuration that corre-
sponds to C3.

−1 −2 −2

−2 −2 −2

−2 −2 −2

(d) The Tatamibari configuration that corre-
sponds to C4.

Fig. 11: Tatamibari configurations correspond to C1, C2, C3, and C4. The gray cells denote the positions
of the initial hints.

dimensional array B whose entries are characters of the form +, −, |, or ∗, where ∗ represents an
empty cell). The algorithm performs the following steps:

1) appending a number to every hint (non-empty cell) in B using IDFIER function described in
Algorithm 5,

2) determining the possible identities (possible regions) of every empty cell in B using POSSIBLE-
EMPTY function described in Algorithm 9,

3) generating all possible Tatamibari configurations from the list of all possible identities (possible
regions) for all empty cells using COMBINATION function described in Algorithm 10,

4) checking whether each Tatamibari configuration obtained in step 3 is also a Tatamibari solution
using VERIFIER function described in Algorithm 4.

The objective of Algorithm 11 is to print every possible Tatamibari solution to an arbitrary Tatamibari
configuration B of size m× n.
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Algorithm 11 EXHAUSTIVE(B,m, n) prints every possible Tatamibari solution to an arbitrary Tatamibari
configuration B represented as a two-dimensional array of size m× n.

Input: A Tatamibari instance B represented as a two dimensional array of size m× n, the entries of the array are
either +, −, |, or ∗.

Output: Every two-dimensional array that is a solution to the Tatamibari instance B described in the input (if any
solution exists).

1: B ← IDFIER(B,m, n) ▷ appending a number to every hint using Algorithm 5
2: (E,H)← POSSIBLE-EMPTY(B) ▷ determining the positions of empty cells and the list of possible identities

for such cells
3: C ← COMBINATION(H) ▷ generating all possible Tatamibari configurations using Algorithm 10
4: i← 0
5: while i < length of C do
6: j ← 0
7: while j < length of E do
8: B[E[j]][0][E[j]][1]← C[i][j] ▷ filling B with possible identities
9: j ← j + 1

10: end while
11: valid← VERIFIER(B,m, n) ▷ verifying whether the configuration B is also a solution
12: if valid then
13: print B
14: end if
15: i← i+ 1
16: end while

The asymptotic upper bound for the running time of Algorithm 11 is discussed in Theorem 1.

Theorem 1. The asymptotic upper bound for the running time of Algorithm 11 for an arbitrary Tatamibari
instance B of size m× n with h hints where 0 ≤ h ≤ mn is O(max{m2n2, hmn−h · hmn}).
Proof. For brevity, we occasionally denote the number of empty cells by e (e = mn − h). From the
aforementioned analyses, the asymptotic upper bounds for line 1, line 2, and line 3 of Algorithm 11
are respectively O(mn), O(m2n2), and O(he). Thus, the asymptotic upper bound for lines 1–3 of this
algorithm is O(max{m2n2, hmn−h}). This means if the number of empty cells is sufficiently small (i.e.,
he < m2n2), then the asymptotic upper bound for lines 1–3 of EXHAUSTIVE(B,m, n) is O(m2n2).

Observe that there is a doubly-nested loop in lines 5–16. The number of iterations for the innermost loop
in lines 7–10 is equal to the length of E, i.e., the number of empty cells (e). For each possible configuration
obtained by replacing the empty cells with particular identities, we check whether such a configuration
is also a solution using VERIFIER function described in Algorithm 4 whose upper bound is O(hmn).
Assuming that the print procedure in line 13 takes O(mn) time and e = mn−h < hmn, the asymptotic
upper bound for lines 7–14 is O(max{e, hmn,mn}) = O(max{mn−h, hmn,mn}) = O(hmn). Since
the number of possible configurations (the length of the list C) is bounded above by he, we conclude
that the asymptotic upper bound for lines 5–16 of Algorithm 11 is O(he · hmn) = O(hmn−h · hmn).

By combining the asymptotic upper bounds for lines 1–4 and 5–16, we conclude that the asymptotic
upper bound for Algorithm 11 is

O(max{max{m2n2, hmn−h}, hmn−h · hmn}) = O(max{m2n2, hmn−h · hmn}). (2)

Theorem 1 tells us that, if the number of empty cells, e = mn−h, is sufficiently small, i.e., hmn−h <
m2n2, then the asymptotic upper bound for the running time of Algorithm 11 is O(m2n2). Notice that
O(m2n2) is the asymptotic upper bound to put a unique number to every hint, check the positions of
every empty cell, and determine the list of all possible identities for such a cell. On the other hand, if
e = mn− h is sufficiently large, i.e., m2n2 < hmn−h, then the asymptotic upper bound for the running
time of Algorithm 11 is O(hmn−h ·hmn). Observe that O(hmn−h ·hmn) is the asymptotic upper bound
to generate all possible configurations of an m×n Tatamibari puzzle with h hints and to verify whether
each of these configurations is also a Tatamibari solution.

Reinhard et al.
Solving Tatamibari Puzzle Using Exhaustive... 72



V. COMPUTATIONAL EXPERIMENTS

This section describes the computational experiments of our proposed exhaustive search algorithm for
solving arbitrary Tatamibari puzzles. Experiments were performed using C++ programming language
and g++ version 11.3.0 compiler on a 64-bit Windows 10 version 21H2 operating system. Here, C++ is
chosen because it is relatively faster than other programming languages such as Java or Python [38]. The
system also used Intel(R) Core(TM) i7-8550U CPU @ 1.80 GHz with 16.0 GB of RAM. We provide
source codes, test cases, and more detailed experimental data used in our experiments for interested
readers in https://github.com/chrisalpha5/TatamibariExhaustive.

A. Experimental Results for Verification Algorithm

Our proposed verification function in Algorithm 4 was tested against some Tatamibari solutions
described in [39]. We considered 26 different Tatamibari solutions where each solution corresponds
to a standard English alphabet. Every solution is also represented using a 10×10 array whose entries are
of the form ⟨symbol⟩⟨number⟩. Each entry in the array represents an identity of a cell in a Tatamibari
configuration. We ran the implementation of our verification algorithm five times for each solution
and determined the average running time among these five runs. The average verification time for all
Tatamibari solutions is 0.741 milliseconds. The lowest average verification time happened for the solution
that corresponds to the letter V (0.566 milliseconds), while the highest average verification time occurred
for the solution that corresponds to the letter K (1.092 milliseconds).

B. Counting the Number of Solutions Using Exhaustive Search Techniques

Due to the limitation of our proposed exhaustive search-based algorithm and its implementation in
C++, we did not test our algorithm for finding the solutions to Tatamibari instances in [39]. Nevertheless,
we tested our proposed algorithm for obtaining the number of possible solutions to empty Tatamibari
instances of small sizes. In particular, we removed all hints from the puzzles which are used to get
solutions and instead started from an empty grid. We counted the number of ways to fill this grid with
valid Tatamibari solutions. Formally, for an empty grid of size m×n, we define S(m,n) as the number
of possible valid Tatamibari solutions to such a grid. In addition, we also define T (m,n) as the average
running time of three runs for finding the number of valid Tatamibari solutions to such a grid. Our
experiments determined the value of S(m,n) and T (m,n) for small m and n, i.e., m ∈ {1, 2} and
n ∈ {1, . . . , 5}.

Suppose we consider two distinct Tatamibari instances T1 and T2 of the same sizes. These instances
may have an identical solution. For example, in Fig. 12 we have two 2× 2 Tatamibari instances in Fig.
12a and Fig. 12b with an identical solution given in Fig. 12c.

−1

−2

(a)

−1

−2

(b)

−1 −1

−2 −2

(c)

Fig. 12: Two distinct Tatamibari instances with the same solution.

Suppose we consider a list S containing several distinct solutions to Tatamibari instances of size m×n.
Given a particular solution A to a Tatamibari instance of size m× n, we can check whether A exists in
S using the Boolean function EXISTS described in Algorithm 12. The asymptotic upper bound for the
running time of this algorithm is O(s), where s is the number of elements of S.
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Algorithm 12 EXISTS(S, A) checks if A exists in S.

Input: A list S containing several distinct solutions to Tatamibari instances of sizes m×n and a Tatamibari solution
A of the same size.

Output: The function returns true if A exists in S, otherwise it returns false.
1: found← false
2: i← 0
3: while i < length of S and not found do
4: if S[i] = A then
5: found← true
6: end if
7: i← i+ 1
8: end while
9: return found

Suppose we consider two distinct Tatamibari instances T1 and T2 whose solutions are respectively S1

and S2. Two Tatamibari solutions S1 and S2 of the same size are considered identical if the partitions
that are associated with S1 and S2 are identical regardless of the number put for the hints. In other words,
S1 and S2 are considered identical if S2 can be obtained from S1 by permuting the number associated
with every symbol in S1. For example, in Fig. 13, both solutions in Fig. 13c and Fig. 13d are considered
identical because they are associated with the same partition in Fig. 13e.

+1

|2

−3

(a) A Tatamibari instance of size 3× 3.

|1

+2

−3

(b) A Tatamibari instance of size 3 × 3 that is
different from Fig. 13a.

+1 +1 |2

+1 +1 |2

−3 −3 −3

(c) A solution to the Tatamibari instance in Fig. 13a.

+2 +2 |1

+2 +2 |1

−3 −3 −3

(d) A solution to the Tatamibari instance in Fig. 13b.

+ + |

+ + |

− − −

(e) A partition created by the Tatamibari solutions in
Fig. 13c and Fig. 13d.

Fig. 13: Example of identical solutions to different instances.

Given a list S of distinct Tatamibari solutions of size m× n and a Tatamibari solution A of the same
size, we describe the function SIMILAR(S, A) in Algorithm 13 to check whether there is a solution
Si ∈ S such that Si and A represent an identical Tatamibari solution regardless of the numbering of the
identity. The asymptotic upper bound for the running time of this algorithm is O(smn), where s is the
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number of elements in S.

Algorithm 13 SIMILAR(S, A) checks if a Tatamibari solution A of size m×n is identical to one of the Tatamibari
solutions in S containing several distinct Tatamibari solutions of size m × n, the identicalness of the solution is
considered from the partitions created by the solutions irrespective of the numbering put to the hints.

Input: A list S containing several distinct solutions to Tatamibari instances of size m×n and a Tatamibari instance
A of the same size.

Output: The function returns true if A is identical to one of the solutions in S regardless of the numbering put to
the hints.

1: i← 0
2: while i < length of S do
3: b← true
4: j ← 0
5: while j < length of S[i] and b do
6: if S[i][j][0] ̸= A[j][0] then ▷ checks if S[i] and A do not have identical symbols of hints
7: b← false
8: end if
9: j ← j + 1

10: end while
11: if b then ▷ S[i] and A have identical symbols of hints
12: initialize an array t with ‘0’
13: j ← 0
14: while j < length of S[i] do
15: if t[S[i][j][1]] = ‘0’ then
16: t[S[i][j][1]]← A[j][1] ▷ store the identity number of S[i] in t
17: end if
18: j ← j + 1
19: end while
20: j ← 0
21: while j < length of A do
22: A[j][1]← t[A[j][1]] ▷ assign the corresponding identity of A in t
23: j ← j + 1
24: end while
25: if S[i] = A then
26: return true
27: end if
28: end if
29: i← i+ 1
30: end while
31: return false

Suppose we consider a Tatamibari instance B of size m×n. We describe a modified exhaustive search
technique in Algorithm 14 for finding all possible distinct Tatamibari solutions to B and storing all of
these solutions in a solution list SL. The functions EXISTS in Algorithm 12 and SIMILAR in Algorithm
13 are used to ensure that all solutions in SL are distinct and no solutions resemble identical partitions.
The asymptotic upper bound for the running time of MODIFIEDEXHAUSTIVE in Algorithm 14 is identical
to that of Algorithm 11, namely O(max{m2n2, hmn−h · hmn}), for finding all distinct solutions to a
Tatamibari instance of size m× n with h hints.
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Algorithm 14 MODIFIEDEXHAUSTIVE(B,m, n,SL) finds every possible Tatamibari solution to an arbitrary
Tatamibari configuration B represented as a two-dimensional array of size m × n and stores the solution in a
list SL. The solutions are guaranteed to represent different Tatamibari partitions.

Input: A Tatamibari instance B represented as a two dimensional array of size m× n, the entries of the array are
either +, −, |, or ∗, and a list SL containing the solutions to B.

Output: An updated list SL containing every two-dimensional array that is a solution to the Tatamibari instance
B described in the input (if any solution exists). All solutions are guaranteed to represent different Tatamibari
partitions.

1: B ← IDFIER(B,m, n) ▷ appending a number to every hint using Algorithm 5
2: (E,H)← POSSIBLE-EMPTY(B) ▷ determining the positions of empty cells and the list of possible identities

for such cells
3: C ← COMBINATION(H) ▷ generating all possible Tatamibari configurations using Algorithm 10
4: i← 0
5: while i < length of C do
6: j ← 0
7: while j < length of E do
8: B[E[j]][0][E[j]][1]← C[i][j] ▷ filling B with possible identities
9: j ← j + 1

10: end while
11: if VERIFIER(B,m, n) then
12: if SL is not empty then
13: if not EXIST(SL, B) and not SIMILAR(SL, B) then
14: add B to SL ▷ adding the solution B to the solution list SL
15: end if
16: else
17: add B to SL ▷ B is the first solution to the instance
18: end if
19: end if
20: i← i+ 1
21: end while
22: return SL

To find the number of different ways for filling an m × n grid with Tatamibari solutions, we need
to generate all possible Tatamibari instances of size m× n. Notice that any Tatamibari instance of size
m×n can be represented using two-dimensional array of size m×n whose entries are either +, −, |, or
∗ (∗ signifies an empty cell). If we ignore an empty instance (an instance with no hints), then there are
4mn − 1 possible ways to create an m × n Tatamibari instance. We first describe Algorithm 15 which
constructs a one-dimensional list L of size mn whose entries are the list [∗, |,−,+]. The output of this
algorithm is then used as an input of Algorithm 10 to construct all m × n Tatamibari instances with h
hints where 1 ≤ h ≤ mn. The asymptotic upper bound for the running time of Algorithm 15 is O(mn).

Algorithm 15 INITIATE-EMPTY(m,n) constructs a one-dimensional list L of size mn whose entries are the list
[∗, |,−,+].

Input: Two integers m and n respectively represent the number of rows and columns in a Tatamibari puzzle.
Output: A one-dimensional list L of size mn whose entries are the list [∗, |,−,+].

1: i← 0
2: while i < m do
3: j ← 0
4: while j < n do
5: add [∗, |,−,+] to L
6: j ← j + 1
7: end while
8: i← i+ 1
9: end while

10: return L

For example, if m = n = 2, then Algorithm 15 produces the list L = [[∗, |,−,+], [∗, |,−,+], [∗, |,−,+],
[∗, |,−,+]]. Notice that, using this list as the input for the function COMBINATION in Algorithm 10 yields
a list C containing every list of four entries, each is associated with a possible Tatamibari instance of
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size 2× 2 with 0, 1, 2, 3, or 4 hints, namely

C =
[
[∗, ∗, ∗, ∗], [∗, ∗, ∗, |], [∗, ∗, |, |], . . . , [∗, ∗,+,+], . . . ,

[∗, |, |, |], . . . , [∗,+,+,+], . . . , [+,+,+,−], [+,+,+,+]
]
.

(3)

Algorithm 16 describes a method to generate all possible distinct solutions to an empty Tatamibari
instance of size m × n. These solutions are stored in a list SL. The algorithm is described as follows.
Initially, SL is defined as an empty list. To construct all possible Tatamibari instances of size m × n,
we call the function INITIATE-EMPTY(m,n) and generate all 4mn lists of size mn whose entries are
either ∗, |, −, or + using the function COMBINATION. Notice that C[0] is a one-dimensional list of size
mn whose entries are all ∗, which corresponds to an empty Tatamibari instance. Thus, we discard C[0]
and only consider the lists C[1], C[2], . . . , C[4mn−1], C[4mn], i.e., the lists that correspond to Tatamibari
instances with at least one hint. At the end of the iteration, SL contains all possible Tatamibari solutions
to an m×n grid and the size of SL is the number of ways to construct Tatamibari solutions in an m×n
grid.

Algorithm 16 COUNTSOLUTIONEXHAUSTIVE(m,n) counts the number of distinct solutions to an empty m× n
Tatamibari board using exhaustive search technique.

Input: Two integers m and n respectively denoting the number of rows and columns of the Tatamibari board.
Output: The number of ways to fill m× n Tatamibari board with valid Tatamibari solutions.

1: SL ← an empty list
2: L← INITIATE-EMPTY(m,n)
3: C ← COMBINATION(L)
4: i← 1
5: while i < length of C do ▷ C[0] corresponds to an empty instance
6: change C[i] to a Tatamibari Instance Bi

7: SL ← MODIFIEDEXHAUSTIVE(Bi,m, n,SL)
8: end while
9: print (length of SL)

Since the running time for MODIFIEDEXHAUSTIVE is bounded by O(max{m2n2, hmn−h ·hmn}) and
the length of C is 4mn, then the asymptotic upper bound for Algorithm 16 is O(max{4mnm2n2, 4mn ·
hmn−h · hmn}). We test Algorithm 14 to find the number of solutions of several Tatamibari instances
of sizes m × n, i.e., S(m,n), for m ∈ {1, 2} and n ∈ {1, . . . , 5}, with at least one hint. Furthermore,
since S(m,n) = S(n,m), we only consider the case where m ≤ n. These values are summarized in
Table I. For example, since S(2, 2) = 7, we have seven distinct Tatamibari solutions of size 2×2. These
solutions are depicted in Fig. 14.

m
n

1 2 3 4 5

1 1 2 4 8 16
2 7 36 183 898

TABLE I: The value of S(m,n) for several m and n where m ∈ {1, 2} and n ∈ {1, . . . , 5}.

Notice that in Fig. 14, all solutions represent different partitions, but some of them are identical up
to rotation (90◦ clockwise or counterclockwise rotation, 180◦ clockwise or counterclockwise rotation),
reflection (reflection along the horizontal or vertical line), or combination of both rotation and reflection.
Given two Tatamibari solutions T1 and T2 of the same size, we say T1 and T2 are equivalent if T2 can
be obtained from T1 by performing one or more of the following operations and their combinations:

1) 90◦ clockwise rotation,
2) 90◦ counterclockwise rotation,
3) 180◦ clockwise or counterclockwise rotation,
4) horizontal reflection (i.e., flipping the columns),
5) vertical reflection (i.e., flipping the rows).

For instance, in Fig. 14, the solutions in Fig. 14a, Fig. 14b, Fig. 14c, and Fig. 14d are equivalent.
Furthermore, by considering these equivalent classes, we have three different Tatamibari solutions in
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a 2 × 2 grid, namely the solution with three partitions (Fig. 14a, Fig. 14b, Fig. 14c, and Fig. 14d),
the solution with two partitions (Fig. 14e and Fig. 14f), and the solution with one partition (Fig. 14g).
Suppose we define Sunique(m,n) as the number of different Tatamibari solutions in an m×n up to the
aforementioned rotations and reflections. The value of Sunique(m,n) for m ∈ {1, 2} and n ∈ {1, . . . , 5}
is summarized in Table II.

m
n

1 2 3 4 5

1 1 2 3 6 10
2 3 20 78 303

TABLE II: The value of Sunique(m,n) for several m and n where m ∈ {1, 2} and n ∈ {1, . . . , 5}.

+1 |2

+3 |2

(a)

|1 +2

|1 +3

(b)

−1 −1

+2 +3

(c)

+1 +2

−3 −3

(d)

−1 −1

−2 −2

(e)

|1 |2

|1 |2

(f)

+1 +1

+1 +1

(g)

Fig. 14: All possible solutions of the 2× 2 empty Tatamibari puzzle.

For a grid of size m×n, we define T (m,n) as the average running time of three runs for finding the
number of valid Tatamibari solutions to such a grid. We measured the values of T (1, n) for n ∈ {1, . . . 10}
and T (2, n) for n ∈ {2, . . . , 5}. The average running time for finding the number of solutions to an empty
Tatamibari instance of size 1×n where 1 ≤ n ≤ 10 is depicted in Fig. 15, while the average running time
for determining the number of solutions to an empty Tatamibari instance of size 2×n where 2 ≤ n ≤ 5
is depicted in Fig. 16. We do not conduct further experiments due to the limitations of our computing
environment. However, these empirical results concur with the fact that finding the solutions to Tatamibari
instances using the exhaustive search technique requires an exponential amount of time with respect to
the size of the grid and the number of hints as described in Theorem 1.

VI. CONCLUSION AND FUTURE WORKS

We have discussed an exhaustive search approach for solving an arbitrary Tatamibari puzzle. In doing
so, we also provide an O(hmn) time algorithm for verifying whether an m×n Tatamibari configuration
with h hints satisfies four rules of the Tatamibari puzzle. In Theorem 1, we prove that the asymptotic
upper bound for the running time of our proposed method is O(max{m2n2, hmn−h ·hmn}), where m×n
is the size of the grid and h is the number of the hints in the puzzle. To the best of our knowledge, this
result also provides the first explicit upper bound for solving arbitrary Tatamibari puzzles using algorithms
that can be implemented without using any specific libraries. Our approach might not be as efficient as
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Fig. 15: The average running time of three runs for finding the number of solutions to empty Tatamibari
instances of size 1× n where 1 ≤ n ≤ 10.

Fig. 16: The average running time of three runs for finding the number of solutions to empty Tatamibari
instances of size 2× n where 2 ≤ n ≤ 5.

the method proposed by Adler et al. [25]. However, our exhaustive search technique does not require
an additional library so that it can be directly used in any standard imperative programming language.
Moreover, we believe that the theoretical and experimental comparisons between the exhaustive search
algorithm and SAT-based (including SMT solver) technique need further exploration.

From an experimental point of view, the test cases used in our research are very limited. This
happens partly because of the limitation of our computing environment. In addition, we believe that
some theoretical adjustment regarding Algorithm 16 is required to determine the value of S(m,n) for
larger m and n. For example, one can determine the maximum number of hints in an m× n Tatamibari
puzzle so that such a puzzle has a solution. Another interesting open problem is determining the minimum
number of hints so that a Tatamibari instance is guaranteed to have a unique solution.
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