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Abstract
Several methods of detecting coronary artery disease (CAD) have been developed, but they are
expensive and generally use an invasive catheterization method. This research provides a solution
to this problem by developing an inexpensive and non-invasive digital stethoscope for detecting
CAD. To prove the effectiveness of this device, twenty-one subjects consisting of 11 CAD
patients and 10 healthy people from Hasan Sadikin Hospital Bandung were selected as validation
test participants. In addition, auscultation was carried out at four different locations around their
chests, such as the aorta, pulmonary, tricuspid, and mitral. Then the phonocardiogram data taken
from the stethoscope were analyzed using machine learning. To obtain optimal detection accuracy,
several types of kernels such as radial basis function kernel (RBF), polynomial kernel and linear
kernel of Support Vector Machine (SVM) have been analyzed. The experimental results show that
the linear kernel outperforms compared to others; it provides a detection accuracy around 66%.
Followed by RBF is 56% and Polynomial is 46%. In addition, the observation of phonocardiogram
signals around the aorta is highly correlated with CAD, giving an average detection accuracy for
the kernel of 66%; followed by 44% tricuspid and 43% pulmonary.

Keywords: Coronary Artery Disease (CAD), Heart Diseases, Machine Learning, Stethoscope
Digital

Abstrak
Beberapa metode untuk mendeteksi penyakit arteri koroner (CAD) telah dikembangkan, tetapi
harganya mahal dan umumnya menggunakan metode kateterisasi invasif. Penelitian ini memberikan
solusi untuk masalah ini dengan mengembangkan stetoskop digital yang murah dan non-invasif
untuk mendeteksi CAD. Untuk membuktikan keefektifan alat ini, dipilih dua puluh satu subjek yang
terdiri dari 11 pasien CAD dan 10 orang sehat dari RS Hasan Sadikin Bandung sebagai peserta uji
validasi. Selain itu, auskultasi dilakukan di empat lokasi berbeda di sekitar dada mereka, yaitu aorta,
pulmonal, trikuspid, dan mitral. Kemudian data fonokardiogram yang diambil dari stetoskop
dianalisis menggunakan pembelajaran mesin. Untuk mendapatkan akurasi deteksi yang optimal,
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beberapa jenis kernel seperti radial basis function kernel (RBF), polynomial kernel dan linear kernel
of Support Vector Machine (SVM) telah dianalisis. Hasil percobaan menunjukkan bahwa kernel
linier berkinerja lebih baik dibandingkan dengan yang lain; ini memberikan akurasi deteksi sekitar
66%. Disusul RBF 56% dan Polinomial 46%. Selain itu, pengamatan sinyal fonokardiogram di
sekitar aorta sangat berkorelasi dengan CAD, memberikan akurasi deteksi rata-rata untuk kernel
66%; Kemudian diikuti trikuspid 44% dan paru 43%.

Kata Kunci: Coronary Artery Disease, Jantung, Machine Learning, Stetoskop

[.  INTRODUCTION

here are many types of diseases that are experienced by various groups of people, but it is difficult to

identify the symptoms of the diseases. One type of the diseases is coronary heart disease or known also as
coronary artery disease (CAD). CAD is an abnormality in the heart due to accumulation of plaque on the interior
walls of the arteries. This plaque blocks blood flow to reach the heart muscles which may lead to a condition
called as ischemia. In the worst-case ischemia leads to heart muscle cell death and heart attack [1, 2]. CAD has
caused the death of thousands of people in Europe, with a mortality rate of 20% [3]. To overcome this situation,
59% of patients performed an examination of the body's condition using coronary angiography technology.
Unfortunately, this method requires an expensive cost. The results of the angiograph evaluation is also
sometimes less accurate in determining CAD. On the other hand, 50% of patients who do not undergo the
examination for CAD have a sudden death condition [3].

Data from the Ministry of Health of the Republic of Indonesia [4], in 2013, states that the prevalence of CAD
in Indonesia is around 0.5% (883,000) of the total population. This number continues to increase from year to
year; and the prevalence has reached 1.5% (3,975 million) in 2018 [5]. Based on the doctor's diagnosis [4], the
number of coronary heart sufferers in 2013 was much greater than the prevalence, i.e., 1.5% or an estimated
2,650,340 people. It is estimated that the highest number of coronary heart disease sufferers is in West Java
Province, as many as 160,812 people (0.5%). Meanwhile, North Maluku Province had the lowest number of
sufferers, around 1,436 people (0.2%).

The development of information technology in the current digital era should be able to minimize CAD. This
can be achieved by conducting early screening at a lower cost. Addressing these challenges, several researchers
have developed inexpensive, noninvasive early detection of CAD. Pouladian, et al. [6] developed the Arterio-
Oscillo-Graph technique to detect CAD and evaluated it in 26 patients out of 29 test participants. Another
researcher, K. Lei [7] used a machine learning to diagnose potential CAD based on patient medical records.
Weighted Naive Bayes was the proposed method chosen to detect CAD and produced a detection accuracy
around 79%. This less-than-optimal accuracy result may have a negative impact because accurate diagnosis and
analysis is needed in the medical world. Furthermore, collecting medical record data on patients takes a very
long time. If the patient suffers from many diseases, selecting medical record data that can be used to detect
CAD becomes difficult. In addition, manual recording of patient medical records in several doctors' clinics adds
to the complexity of the tracing.

This research provides a solution to all the above problems, by developing an inexpensive machine learning-
based CAD detector to shorten the time of diagnosis. The developed CAD detector is an enhanced version of a
digital stethoscope with CAD detection capabilities. The machine learning method chosen for the CAD detector
is the best algorithm from the Support Vector Machine (SVM), which is acquired by experimenting with several
types of kernel on SVM, such as radial basis function kernel (RBF), polynomial kernel and linear kernel.
Henceforth, this article also contains Related Works, Research Methodology, Experiments Results, Discussion,
and Conclusion.
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II. RELATED WORKS

A. Acoustic Stethoscope Development

A stethoscope was first invented in 1818 by a French doctor named René Laennec [8]. The stethoscope,
which was originally developed from a simple wooden tube, has now developed into a sophisticated case and
known as an acoustic stethoscope. The device commonly used for detecting heart healthy through a heart sound
or phonocardiogram (PCG) signal. A normal heartbeat sound is at a frequency of 10-200 Hz. The normal heart
sounds can be classified into 4 type of sounds, namely: S1 (first heart sound), S2 (second heart sound), S3 (third
heart sound) and S4 (fourth heart sound). The S1 sound is produced by closing the atrioventricular (AV) valve,
the S2 sound is produced due to the closure of the aortic valve and pulmonic valve. The S3 sound occurs at the
beginning of the diastole and the S4 sound at the end of the diastole [8]. The results of auscultation using an
acoustic stethoscope may have several drawbacks [9, 10], such as: 1. the diagnosis results depend on the
sensitivity of the hearing and the doctor's experience 2. the heart sound signal heard by doctor cannot be stored
as a medical history of patient. Since a decade ago, various attempts have been performed to develop a digital
stethoscope to overcome the above problems; and the rest of this section will explain these efforts.

Wang, et al. [11] developed a digital stethoscope to remotely analyze patient's heart sounds (home
monitoring). The stethoscope works offline to record phonocardiogram signal data from the stethoscope to
Universal Serial Bus (USB) device. The data is then analyzed on a computer using a single degree of freedom
(SDOF) analytical model to obtain a cardiac sound characteristic waveform (CSCW). Furthermore, four
characteristic parameters, known as T1, T2, T11 and T12, associated with the first heart sound (S1) and the
second heart sound (S2) are determined by measuring the time interval between the points traversed in the
CSCW and a threshold value (THV) to differentiate normal and abnormal heart sounds. Evaluation on 40
normal and 20 abnormal heart sounds from 10 healthy volunteers and 5 patients with heart problems were
performed. The analysis results show that the proposed system can distinguish between normal and abnormal
heart sounds with an accuracy of 92.5%.

Research on digital stethoscopes was also carried out by Shin, et al. [12] which increased the stethoscope's
ability to detect murmurs. A murmur is a condition when the blood flows through the heart or blood vessels
around the heart due to an abnormality caused by turbulence.

Research on digital stethoscopes by [13-15] focuses on utilizing of wireless technology to transmit
stethoscope data. The wireless stethoscope can be used for monitoring patient’s conditions without limiting
their mobility. Heart sounds recorded using a wireless digital stethoscope are then compared with the recorded
heart sounds from a wired digital stethoscope. The result of experiments show that performance of the proposed
wireless stethoscope is similar to the wired stethoscope [14].

B. Stethoscope for Detecting CAD

Schmidt, et al. [16] added a digital signal processing unit to an electronic stethoscope in order to be used for
diagnosing coronary artery disease (CAD). Nine types of features from five overlapping frequency bands were
obtained and analyzed using 435 records from 133 subjects to identify CAD. Using the quadratic discriminant
function, several features are combined into a CAD score. The area under the operating characteristic of the
recipient for CAD score was 0.73 (95% CI: 0.69-0.78). From these results it is concluded that there is a potential
that heart sounds can be utilized for diagnosing CAD. However, further improvements are needed for clinical
relevance. Research by [16] has triggered several studies of CAD detection based on phonocardiogram signals
using machine learning, such as in [1, 2, 7, 17-22].

Dragomir, et al. [2] investigated acoustic features of CAD in coronary patient subjects who had a single
coronary occlusion before and after stent placement. Acoustic characteristics are achieved by calculating fast
Fourier transform (FFT) ratio of the acoustic signal, which is the total power above 150 Hz divided by the total
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power below 150 Hz. In addition, an estimate of the entropy value is also calculated to assess the differences
caused by the stent placement procedure. Using the power ratio and Classifier Linear Discriminant Analysis
(LDA) features, the sensitivity and specificity values achieved were 82% and 64%. Meanwhile, using entropy
estimates, the sensitivity and specificity were 82% and 55%. These results suggest that the effect of stent
placement on coronary occlusion can be monitored using an electronic stethoscope.

Maknickas and Maknickas [17] used Deep Convolutional Neural Networks and mel-frequency spectrum
coefficients to recognize normal and abnormal phonocardiogram signals from the human heart. The data used
in the experiment is cardiac sound data from PhysioNet.org. The proposed approach yields an accuracy of
84.15%. The sensitivity and specificity were 80.63% and 87.66%.

Samanta, et al. [18] proposed a multi-channel PCG system to differentiate CAD and normal subjects. This
system does not require additional reference signals, such as an electrocardiogram (ECG) signal. The PCG
sensors are attached to four different places on the chest. Then the 5 features in the time and frequency domain
are extracted from the PCG signal. Binary classification based on Artificial Neural Network (ANN) is applied
to the features acquired. The classification results are evaluated on each channel and show that the proposed
sub-band-based spectral features perform well on clean and noise data. The accuracy achieved was 82.57% with
a combination of signals from the tricuspid, mitral, and midaxillary regions. This multi-channel PCG system
provides an accuracy increase of more than 4% compared to the best performance acquired by a single channel
system.

Sridhar, et al. [20] attempted to observe CAD patterns using Discrete Wavelet Transform (DWT) and
machine learning. The accuracy achieved by the study is above 95%. However, the data used to design a
machine learning model were only 7 CAD patients and 40 normal subjects. This makes the study lacks in the
objectivity of the diagnosis of CAD itself, because the data used are imbalanced. The effect of the imbalance
data causes the CAD detector to be inaccurate (bias) in predicting the minority class (CAD patients) compared
to the majority class (normal subjects) [23].

AlHosani, et al. [21] focused on developing machine learning for CAD detection in larger samples than
Sridhar, et al. [20]. Twenty-nine CAD subjects were invited to participate in the study; and an electrocardiogram
(EKQG) is used as a tool to detect CAD. The accuracy achieved in the study was 93%. Ciivitoglu and Isik [22]
also focused on CAD detection using machine learning and yielded an accuracy of more than 80%. In that
study, Ciivitoglu and Isik [22] used 216 sample data.

Lei, et al. [7] used 496 CAD data from a hospital in China in 2016 to conduct a CAD diagnosis using Naive
Bayes. Although using a large number of datasets and data taken directly at the hospital, this study only resulted
in an accuracy of 79%. This is not optimal because good accuracy is needed in the treatment of coronary artery
disease diagnosis.

III. RESEARCH METHODOLOGY
A. Data

This study used data grabbed from 10 doctors participating in the Program Pendidikan Dokter Spesialis (PPDS),
Faculty of Medicine, Padjajaran University Bandung as normal data from healthy subjects. Meanwhile, 11 CAD
patients at Hasan Sadikin Hospital Bandung (in the Cardiac Center division) were marked as CAD data. To
ensure the validity of the data generated from test participants (both healthy and CAD subjects), all subjects are
required to do a medical check-up. Furthermore, data from participants were picked up using a stethoscope that
had been developed based on a predetermined research protocol. These data are numerical phonocardiogram
data taken 4 times for each subject at different places around chest, i.e., in the aorta, pulmonary, tricuspid, and
mitral valve areas for 8 seconds.
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B. Phonocardiogram Signal Processing Methods for CAD Detection

Figure 1 illustrates the method used for processing the phonocardiogram signals using machine learning to
detect CAD. As shown in Figure 1, there are three steps for detecting CAD, i.e., denoising the PCG signal,
performing the extraction process, and finally applying classification.

Denoising PCG signals Extraction of CAD features Feature Classification for
using Discrete Wavelet from PCG signals CAD detection
Transform

Figure 1. Phonocardiogram data processing to detect CAD

Denoising of the PCG signal in this study was carried out using DWT. In more detail, the denoising method
used is adaptive thresholding as described in [24]. Using the method, both threshold value and wavelet
coefficient at the selected decomposition level are determined adaptively. According to Jain and Tiwari [24]
there are three steps that need to be performed for disseminating the PCG signal as follows: decomposing the
signal, determining the threshold value and modifying the wavelet coefficient based on the selected threshold
value, and finally reconstructing the signal.

DWT is also used in this research for CAD feature extraction process by decreasing the wavelet coefficient of
the phonocardiogram signal. There are 5 statistical values picked up from the resulting wavelet coefficients,
i.e., mean, median, standard deviation, skewness, and kurtosis. These five statistical values were chosen with
the consideration that they could represent the change in high-frequency energy in the diastolic murmur as
stated by Zhao [25].

This study uses a support vector machine (SVM) as a method to classify CAD and normal phonocardiogram
signals. In many implementations, it has been proven that SVM gives stable prediction results and effectively
used on small data samples compared to Artificial Neural Network (ANN) [26]. SVM is more stable than ANN
because the prediction given by SVM is based on global optimal, while ANN is based on local optimal. On the
other hand, SVM classifier focuses on the training case which is located at the corner of the class descriptors to
get the optimal hyperplane. This hyperplane is also effective for training with small samples [27]. Hyperplanes
can be represented in the feature space using kernel functions (dot products between mapped pairs of input
points x;) [28]. In this research, several kernels of SVM, such as: radial basis function kernel (RBF), polynomial
kernel, and linear kernel, are studied to get the best predictions of CAD detection. In addition, for the distribution
of training and testing data, the 5-fold cross validation principle is used, and the average of each fold literacy
will be used as the final value of the measured performance.

C. Metrics

This study measures the detection performance of CAD using a metric of accuracy, sensitivity, and specificity.
Accuracy is used to determine the closeness of the predicted value from the system to the actual value.
Sensitivity is used to determine how successful the system is to detect CAD in the CAD subject population.
Specificity is used to determine the accuracy of normal detection in healthy subject populations [8]. The formula
for calculating the CAD detection performance used in this study can be found in equations 1 to 3. Meanwhile,
confusion metrics for predicting the accuracy of CAD detection are presented in Table 1.

TP+ TN

A = 1
Couracy = TbyFP+TN + FN M
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Specificity = —— 2
pectficity = 7pFp @
TP
Sensitivity = ———— 3
Y= TPYFN ®)
TABLEI
CONFUSION MATRIX
Positive Negative
(Predicted Class) | (Predicted Class)
Positive TP FN
(Actual Class) (True Positive) (False Negative)
Negative FP TN
(Actual Class) (False Positive) (True Negative)

TP is true positive, which means the amount of CAD subject data that was successfully identified. TN is true
negative, which means the number of data on healthy people has been detected correctly. Then, FP is false
positive which means the amount of CAD subject data is misidentified. The FN is false negative, which means
the number of data on healthy people is incorrectly recognized.

IV. EXPERIMENT RESULTS

A. Dataset Visualization

The following is an example of visualization of phonocardiogram data from CAD subjects from four different
places around chest: aorta, pulmonary, tricuspid, and mitral (as identified in section III, Research Methodology).
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Figure 2. PCG signal taken in Aorta
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Figure 3. PCG signal taken in Pulmonary
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Figure 4. PCG signal taken in Tricuspid
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Figure 5. PCG signal taken in Mitral

As shown in Figures 2 to 5, the mitral phonocardiogram signal tends to have the lowest sound intensity when
compared to the aorta, pulmonary, and tricuspid levels. However, it is difficult to determine signal abnormalities
using a visual method. For this reason, these signals will be processed using a support vector machine (SVM).

B. Feature Extraction Results

TABLE II shows the results of feature extraction in the aorta using the DWT method as described in the
Research Methodology section. While the feature statistics for all data in TABLE II are as follows, minimum
value: -1.77, maximum: 1.27, standard deviation: 0.57, median: 0, skewness: -0.3 and kurtosis is 1.36. The
meaning of “C” label in TABLE II is phonocardiogram data from CAD subjects, while “N” label is from healthy
subjects. For the results of feature extraction on the mitral, pulmonary, and tricuspid can be seen in the
Appendix.

TABLE II
PHONOCARDIOGRAM FEATURE EXTRACTION ON AORTA
Subjects mean stdev median skewness | kurtosis | Label
1 0.04 0.06 0.01 1.20 -0.24 C
2 -0.07 0.09 -0.03 -1.32 0.01 N
3 -0.01 0.02 0.00 -0.18 -1.22 N
4 -0.04 0.05 -0.01 -0.39 -1.77 C
5 0.21 0.28 0.06 1.12 -0.35 C
6 -0.01 0.02 0.00 -0.86 -0.70 N
7 -0.09 0.12 -0.03 -1.31 -0.04 N
8 0.05 0.05 0.02 1.27 -0.08 C
9 -0.08 0.11 -0.04 -1.22 -0.15 N
10 -0.26 0.27 -0.11 -0.87 -0.79 C
11 0.02 0.03 0.01 1.06 -0.22 N
12 -0.20 0.28 -0.04 -1.23 -0.17 C
13 0.28 0.36 0.10 1.22 -0.17 C
14 -0.05 0.08 0.00 -0.99 -0.62 N
15 0.28 0.35 0.09 1.08 -0.43 C
16 -0.11 0.12 -0.04 -1.02 -0.53 N
17 -0.08 0.08 -0.03 -0.58 -1.41 C
18 0.02 0.03 0.00 1.02 -0.38 N
19 0.08 0.09 0.05 1.14 -0.26 C
20 0.08 0.32 0.12 -0.31 -1.38 N
21 0.07 0.07 0.06 0.59 -0.98 C
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C. SVM Classification Results

The experimental results of CAD detection performance using a support vector machine with RBF,
polynomial and linear kernels can be seen in TABLE III to TABLE IV and are also presented in Figure 2 to
Figure 4. The tables contain also CAD detection in the area around chest such as: aorta, tricuspid, pulmonary
and mitral.

TABLE III
ACCURACY OF CAD DETECTION
Place of phonocardiogram SVM-Linear SVM- SVM-RBF
data acquisition Polynomial
Aorta 66% 46% 56%
Tricuspid 44% 43% 44%
Pulmonary 43% 43% 43%
Mitral 34% 38% 34%
Average 47% 43% 44%
Accuracy
70%
60%
50%
40%
30%
20%
10%
0%

SVM-Linear SVM-Polynomial SVM-RBF
B Aorta M Tricuspid Pulmonary Mitral
Figure 2. Accuracy of CAD Detection

TABLE III and Figure 2 show that the highest accuracy (around 66%) is obtained when the classifier uses a
linear kernel, and the data is grabbed from aorta. On the other hand, the lowest accuracy of 34% is acquired
when the kernel of the classifier is RBF and the data is mitral. The same situation (lowest accuracy value) is
also achieved when the classifier uses a linear kernel, and the data is retrieved from mitral. From TABLE III
and Figure 2, it can also be observed that the accuracy trend based on the three kernels has decreased
simultaneously when data collection is in aorta, tricuspid, pulmonary and mitral regions respectively. When
using linear, polynomial and RBF kernels, the lowest and highest accuracy ranges were 32%, 8% and 22%,
respectively. The average accuracy of the three kernels from the highest to the lowest was 47% for linear kernel,
44% for RBF kernel and 43% for polynomial kernel.

TABLE IV and Figure 3 are the specificity of CAD detection using the SVM classifier. The maximum
specificity value is 46.4%, and it is obtained when the SVM classifier uses a linear kernel and the data is from
the aorta. Conversely, the lowest value is generated by the Polynomial kernel when data is in mitral area. The
data distribution pattern on the specificity results is similar to the accuracy. Data decreased in the three kernels
when data collection was carried out on aorta, tricuspid, pulmonary and mitral, respectively. The highest value
ranges for specificity of linear, polynomial and RBF kernels were 26.4%, 12% and 31.8%, respectively. The
average of specificity based on the three kernels from the highest to the lowest was 20% linear kernel, 15%
RBF kernel, and 13% polynomial kernel.
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TABLE IV
SPECIFICITY OF CAD DETECTION
Place of SVM-Linear SVM- SVM-RBF
phonocardiogram Polynomial
data acquisition
Aorta 46.40% 25% 46.80%
Tricuspid 20% 15% 16.80%
Pulmonary 20% 15% 15%
Mitral 20% 13% 15%
Average 20% 13% 15%
Specificity
50%
40%
30%
20%
- I I

0%
SVM-Linear SVM-Polynomial SVM-RBF

B Aorta M Tricuspid ™ Pulmonary Mitral
Figure 3. Specificity of CAD Detection

TABLE V and Figure 4 are sensitivity of CAD detection using the SVM classifier. The maximum specificity
value is 80%, which is achieved when the SVM classifier uses a linear kernel and the data is in aorta. In contrast,
the lowest sensitivity value, at 25%, was generated by the other three kernels: linear, polynomial and RBF when
data were in mitral area. The pattern of data distribution still follows the pattern of accuracy and specificity
results. Data decreased in the three kernels when data collection was carried out on aorta, tricuspid, pulmonary
and mitral, respectively. The highest value ranges for detection specificity based on linear, polynomial and RBF
kernels were 55%, 15% and 42%, respectively. The average sensitivity of the three kernels from the highest to
the lowest was 48% linear kernels, 46% RBF kernels and 35% polynomial kernels.

TABLE V

SENSITIVITY OF CAD DETECTION
Place of SVM-Linear SVM-Polynomial SVM-RBF
phonocardiogram data
acquisition
Aorta 80% 40% 67%
Tricuspid 48.60% 38% 55%
Pulmonary 38% 38% 38%
Mitral 25% 25% 25%

Average 48% 35% 46%
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Sensitivity
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SVM-Linear SVM-Polynomial SVM-RBF

M Aorta M Tricuspid Pulmonary Mitral

Figure 4. Sensitivity of CAD Detection

V. DISCUSSIONS

Although the results of CAD detection based on phonocardiogram signals still produce unsatisfactory accuracy,
sensitivity, and specificity; however, there are several important notes that can be analyzed from the results as
follows:

1. SVM uses kernel functions to systematically find support vector classifiers in a higher dimension. Several
kernel functions, such as linear, polynomial and RBF, were studied in this study to achieve optimal
detection results. The experimental results show that the linear kernel performs better on detecting CAD
followed by RBF and polynomial on the three metrics used, i.e., accuracy, sensitivity and specificity. More
details on the results can be seen in section [V C "SVM Classification Results". This fact shows that CAD
features extracted from phonocardiogram signals are more suitable to be identified using linear kernels than
both RBF kernels and polynomial kernels. Amiri, et al. [29] also had similar results when experimenting
with the development of PCG data-based newborn cardiac monitoring.

2. The detection results of CAD in the area around aorta show that this area produces the highest detection
performance compared to other areas such as tricuspid, pulmonary and mitral. This is because aorta is
closest to the coronary arteries [30]. The location closer to the coronary arteries directly affects the sound
of the phonocardiogram so that abnormalities on the phonocardiogram are easier to be identified.

VI. CONCLUSION

All research objectives to study of machine learning algorithm on phonocardiogram signals for detecting
coronary artery disease have been achieved. It can be seen from section 4, Experimental Results, that the linear
kernel outperforms compared to other kernels, such as RBF and polynomial kernel in supporting SVM to
identify CAD. The highest detection accuracy of the linear kernel is 66%, followed by RBF 56% and polynomial
46%. For sensitivity, the linear kernels yield 80%, RBF kernels 67% and polynomial kernels 40%. Then for
specificity, linear kernels yielded 46.4%, RBF kernels 46.8% and polynomial kernels 25%. On the other hand,
this study also found that the selection of the CAD data collection location also had an effect on detection
performance. The experimental results show that aorta is location that produces the highest detection
performance, followed by tricuspid, pulmonary and mitral. This is due to the location of aorta closest to the
coronary arteries, so the resulting phonocardiogram sound is easier to detect than other areas. The highest
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detection accuracy in aorta was 66%, while the highest sensitivity at the same area was 80% and finally the
highest specificity in aorta was 46.4%. In general, it can be concluded that the stethoscope phonocardiogram
signal can be used to detect CAD, although studies using larger data should be carried out. Furthermore, other
classifiers should also be explored for better CAD detection performance.
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Following are the results of feature extraction of phonocardiogram data on mitral, pulmonary and tricuspid.

TABLE VI
PHONOCARDIOGRAM FEATURE EXTRACTION ON MITRAL
Subject mean stdev median skewness | kurtosis | Label
1 0.14 0.15 0.07 0.99 -0.56 C
2 -0.08 0.12 -0.01 -1.21 -0.21 N
3 0.20 0.25 0.07 1.19 -0.23 N
4 0.01 0.02 0.01 0.83 -0.67 C
5 0.09 0.11 0.03 1.09 -0.35 C
6 -0.02 0.03 -0.02 0.38 -1.31 N
7 -0.17 0.20 -0.13 -1.09 -0.29 N
8 0.04 0.06 0.01 0.97 -0.47 C
9 -0.03 0.02 -0.02 -0.90 -0.49 N
10 0.05 0.06 0.01 0.95 -0.69 C
11 0.08 0.11 0.02 1.24 -0.17 N
12 0.00 0.04 -0.01 0.45 -1.30 C
13 -0.59 1.08 0.02 -1.35 0.02 C
14 0.10 0.11 0.05 1.10 -0.36 N
15 0.03 0.04 0.01 1.19 -0.22 C
16 0.02 0.04 0.01 1.32 0.03 N
17 -0.09 0.11 -0.03 -0.83 -0.82 C
18 -0.09 0.14 -0.02 -1.47 0.21 N
19 -0.01 0.05 -0.01 -0.48 -0.68 C
20 -0.17 0.22 -0.07 -0.99 -0.55 N
21 -0.05 0.06 -0.02 -1.04 -0.51 C
TABLE VII
PHONOCARDIOGRAM FEATURE EXTRACTION ON PULMONARY
Subject mean stdev median skewness | kurtosis | Label
1 0.01 0.02 0.02 0.11 -1.35 C
2 0.01 0.03 0.01 -0.08 -0.78 N
3 -0.23 0.29 -0.09 -1.23 -0.15 N
4 0.07 0.10 0.00 1.28 -0.10 C
5 0.06 0.08 0.03 0.84 -0.66 C
6 -0.07 0.08 -0.03 -1.13 -0.33 N
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7 0.02 0.02 0.01 0.97 -0.56 N
8 0.01 0.01 0.00 1.24 -0.03 C
9 -0.07 0.08 -0.04 -1.12 -0.29 N
10 -0.12 0.12 -0.07 -0.94 -0.60 C
11 0.04 0.05 0.02 1.28 -0.08 N
12 0.07 0.08 0.02 0.73 -1.08 C
13 -0.27 0.37 -0.07 -1.20 -0.22 C
14 0.23 0.27 0.05 1.13 -0.36 N
15 0.10 0.14 0.03 1.21 -0.17 C
16 -0.10 0.16 0.00 -0.60 -1.36 N
17 -0.02 0.05 -0.01 -0.42 -1.18 C
18 0.17 0.19 0.10 1.11 -0.29 N
19 0.00 0.02 -0.01 0.45 -0.94 C
20 -0.12 0.16 -0.05 -1.34 0.02 N
21 -0.15 0.20 0.00 -0.70 -1.20 C
TABLE VIII
PHONOCARDIOGRAM FEATURE EXTRACTION ON TRICUSPID
Subject mean stdev median skewness | kurtosis | Label
1 -0.12 0.16 -0.02 -1.21 -0.23 C
2 -0.14 0.19 -0.04 -1.14 -0.32 N
3 -0.02 0.01 -0.01 -1.22 -0.04 N
4 0.20 0.24 0.08 1.22 -0.17 C
5 0.00 0.01 0.00 -0.29 -1.78 C
6 -0.07 0.10 -0.02 -1.16 -0.29 N
7 0.06 0.10 0.02 1.17 -0.15 N
8 -0.02 0.03 0.00 -0.43 -1.74 C
9 -0.08 0.11 -0.04 -1.06 -0.39 N
10 0.02 0.02 0.01 0.54 -1.55 C
11 0.04 0.06 0.01 1.10 -0.36 N
12 -0.08 0.11 -0.02 -1.25 -0.15 C
13 0.01 0.02 0.00 1.03 -0.56 C
14 0.00 0.02 0.00 0.00 -1.52 N
15 -0.02 0.03 -0.02 -1.01 -0.39 C
16 -0.17 0.22 -0.05 -1.19 -0.24 N
17 0.03 0.03 0.02 0.60 -1.11 C
18 0.01 0.02 0.00 0.79 -0.88 N
19 -0.01 0.03 0.00 -0.98 -0.38 C
20 -0.06 0.11 -0.01 -1.47 0.21 N
21 -0.09 0.08 -0.07 -0.25 -1.70 C
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