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Abstract 

Sorting algorithms are heavily used by computers. Quicksort is one of the fastest comparison-based 

sorting algorithms. These days almost all computing devices have multiple processors. There is a 

strong need of finding efficient parallel versions of the most common algorithms that are widely 

used. The basic version of quick sort is sequential and uses only one pivot.  Recently, Yaroslavsky 

has proposed a modified version of the quick sort that uses two pivots and runs much faster than the 

single-pivot quick sort. Since then Java has incorporated this dual-pivot quick sort into its standard 

library for sorting. Although there are many parallel versions of the original single-pivot quick sort, 

there is a very few for the dual-pivot. Those few parallel versions of the dual-pivot quick sorts are 

compared with standard sort functions, rather than the dual-pivot quick sort itself. In this paper, we 

provide a parallel version of the dual-pivot quick sort algorithm of Yaroslavsky and implement it in 

Java. For comparison, we run both in small number of parallel processors. The experimental results 

show that our algorithm runs significantly faster than the Yaroslavsky’s algorithm. Moreover, our 

algorithm performs gradually better as the number of processors and the input size increase. 
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Abstrak 

Algoritma penyusunan banyak digunakan oleh komputer. Quicksort adalah salah satu algoritma 

penyusunan berasaskan perbandingan terpantas. Pada masa ini hampir semua peranti 

pengkomputeran mempunyai banyak pemproses. Terdapat keperluan mendesak untuk mencari versi 

selari yang berkesan daripada algoritma yang paling umum yang banyak digunakan. Versi asas 

algoritma penyusunan adalah berurutan dan hanya menggunakan satu pangsi. Baru-baru ini, 

Yaroslavsky telah mencadangkan algoritma penyusunan diubahsuai yang menggunakan dua pivot 

dan berlari lebih pantas daripada jenis cepat pivot tunggal. Sejak itu Java telah memasukkan dua 

pivot penyusunan cepat  ke dalam perpustakaan standardnya untuk disusun. Walaupun terdapat 

banyak versi selari dari pivot tunggal tunggal yang cepat, terdapat sangat sedikit untuk pivot dua. 

Beberapa versi selari jenis dual-pivot quick dibandingkan dengan fungsi piawai susun, dan 

bukannya jenis quick-dual pivot itu sendiri. Dalam kertas kerja ini, kami menyediakan versi selari 

dari algoritma jenis cepat-pivot Yaroslavsky dan mengimplementasinya di Java. Sebagai 

perbandingan, kami menjalankan kedua-duanya dalam sebilangan kecil pemproses selari. Hasil 

eksperimen menunjukkan bahawa algoritma kami berjalan jauh lebih cepat daripada algoritma 

Yaroslavsky. Lebih-lebih lagi, algoritma kami berprestasi lebih baik secara beransur-ansur apabila 

bilangan pemproses dan saiz input meningkat. 

Kata Kunci: Menyusun, Pivot-dua susun cepat, Jenis cepat dua pangsi, cepat selari
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I. INTRODUCTION 

e start with a very simple observation, which also works as a key motivation behind our work in this 

paper. These days, almost all computing devices such as PCs, laptops, mobile phones, and tablets have 

processors with multiple cores. As of today, the number of processors in the abovementioned devices are 

usually within two to sixteen.  

As the number of processors increases in a computer, its performance also increases. A program runs faster on 

a multi-core processor than on a single-core processor. The advantages of multi-core processors are utilized by 

an operating system when it automatically schedules the tasks in multi-core processors. 

In addition, the advantages of multi-core processor can also be utilized by users who design the algorithms or 

software for the computers. An algorithm that runs sequentially in a single-core processor can be designed or 

modified into a parallel version to take the advantages of multiple cores in the processor. In that case, algorithm 

instructions or program code are separated and assigned to different cores to run parallelly. This makes a parallel 

program running much faster on a multi-core processor than on a single-core processor. 

So far, almost all basic algorithms have had their corresponding parallel versions, some of them in many. Such 

algorithms include sorting, searching, graph algorithms, and basic data structure operations [1].  

Parallel algorithms are designed, analyzed and experimented by the researchers for different models of 

computation, different memory architectures, different instruction sets, different parallel programming 

languages, and different types of parallel processors. Some of these variations include shared memory models 

(e.g., PRAM models), distributed memory models, task and data parallelism (e.g., MIMD, SIMD), instruction 

level parallelism, parallel programming languages and libraries (e.g., MPI, OpenMP), parallel graphics 

processors, and computers with number of processors from two to thousands. See [1] for a comprehensive study. 

Sorting is one of the most basic operations performed by computers and their software. On average, a computer 

spends almost 25% of its total computation for sorting purposes. Knuth in his seminal book [2] mentions that 

estimated 25% or more of computing time of all computers are spend for sorting. Moreover, there are many 

computing systems which spend more than 50% of time for sorting [2].  

Among all the sorting algorithms, quick sort is considered to be the fastest comparison-based sorting algorithm 

in practice. Besides that, quick sort is a simple and elegant recursive sorting algorithm. Quick sort is considered 

as one of the top ten algorithms in twentieth century [3], [4].  

After quick sort was first invented by Hoare in 1962 [5], there have not been that many changes in its basic 

architecture of the algorithm. The original quick sort was proposed with one pivot. After a pivot element is 

selected by some method, the algorithm partitions the remaining elements (partition function) into two parts. 

One partition contains the smaller values than the pivot and the other one contains the same or bigger values than 

the pivot. Then the quick sort algorithm is called recursively for the two partitions.  

Researchers tried to improve farther the performance of quick sort with modified partitioning functions [6], 

[7], such as Lumato partitioning [6], which slightly improve the performance of the quick sort in practice.  

There are also attempts to use two pivots in order to improve the running time (see [8] for a discussion). For 

two pivots, the partition function partitions the elements into three parts. The left one contains all elements less 

than the first pivot, the right one contains all elements that are greater than the second pivot, and the middle 

partition contains the remaining elements. These versions of the quick sort are called dual-pivot quick sort. 

However, those attempts for dual-pivot quick sort were all unsuccessful and could not improve the running time.  

Recently, Yaroslavsky [9]-[13] has proposed a dual-pivot quick sort which in practice shows better 

performance than the classical single-pivot quick sort. Since then it got much attention, as it is considered as a 

breakthrough on improving the original quick sort by a noticeable amount. Oracle was quick enough to perform 
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extensive experiment and eventually accommodated the Yaroslavsky’s algorithm in their standard Java.sort() 

function [8], [9], [10], [11], [12]. Previously, the Java.sort() function used to use the original single pivot quick 

sort algorithm. The Yaroslavsky’s algorithm was published in an informal way [13]. However, the algorithm was 

later analyzed in detail and was farther investigated by many researchers who published their results in journals 

and conferences [8], [9], [10], [11], [12].  

Quick sort is considered to be the fastest sorting algorithm in practice when it runs sequentially in a single 

core processor. However, it also got much attention for having its parallel versions [1], [14]-[19]. These parallel 

quick sort algorithms have been designed and then analyzed both theoretically [19] and experimentally [14]-

[19]. Moreover, they have been analyzed for different hardware architecture, different number of processors, 

different types of processors, and graphics processors. The results of these analysis show that the performance 

of parallel versions of quick sort are highly specific to the aforementioned factors. It is very difficult to design 

a single version of parallel quick sort that would run efficiently in all hardware architecture and all models of 

computation. 

For the case of the recent dual-pivot quick sort algorithm of Yaroslavsky, so far there is a very few attempts 

[20], [21], [22] to parallelize it. Taotiamton and Kittitornkun presented two parallel implementations [21], [22] 

and Rattanatranura presented a parallel implementation [20] of the Yaroslavsky’s dual-pivot quick sort. All their 

implementations are in C++. Moreover, they compared their algorithms with the C++ Standard Template Library 

(STL) Sort() function, rather than comparing with the original dual-pivot quick sort of Yaroslavsky. They claim 

that their implementations achieve speedup of 3 to 6. Therefore, a comparison between Yaroslavsky’s dual-pivot 

algorithm and its parallel counterpart is still not available in the literature. 

Our contribution. In this paper, we take a simplistic and basic approach. We provide a parallel version of 

the Yaroslavsky’s dual-pivot quick sort algorithm. We implement in Java our algorithm as well as the 

Yaroslavsky’s one. We run these two algorithms in the same computer with multiple cores. We run the 

Yaroslavsky’s algorithm in a single-core processor of the computer by keeping all other cores inactive. Then 

we run our parallel algorithm in the same computer with two, four or eight cores active. All our experiments 

show that our algorithm outperforms Yaroslavsky’s algorithm by a great amount and the speedup achieved by 

our algorithm is about 3. Moreover, when we compare our algorithm with itself for different number of cores, 

we see that as the number of cores increases, our algorithm performs better.  

We organize the rest of the paper as follows. In Section II, we present our parallel version of dual-pivot quick 

sort. In Section III, we present the experimental results. Section IV concludes the paper with some future work. 

 

II. PARALLEL DUAL-PIVOT QUICK SORT ALGORITHM 

We first describe the dual-pivot quick sort algorithm of Yaroslavsky [9]-[13]. Then we shall describe the 

modification that we do for making it parallel. 

Yaroslavsky’s dual-pivot algorithm: We assume that the elements that are to be sorted are in an array A and 

that they are indexed from 0 to n-1. For the rest of the paper, we call the Yaroslavsky’s dual-pivot algorithm as 

algorithm 1 and our algorithm as algorithm 2. The two pivots in algorithm 1 are called P1 and P2. P1 and P2 are 

selected as the first and last elements of the array, which are A[0] and A[n-1], respectively. If P2 is smaller than 

P1, then we swap them so that the first pivot is always same or smaller than the second pivot. 

Algorithm 1 works as a quick sort if the number of elements in A is bigger than some threshold. Otherwise, it 

works as an insertion sort. The threshold can be set by the user. The threshold set by the author in his original 

version of the algorithm is twenty-seven. If n is smaller than this threshold, then the insertion sort is used. 

Otherwise, if n is same or bigger than this threshold, then algorithm 1 partitions the elements into three parts. 

This is called partitioning. Elements that are less than P1 go to the first (or left) part. Elements that are greater 
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than or equal to P1 and less than or equal to P2, go to the second (or middle) part. Elements that are greater than 

P2 go to the third (or last) part. For each partition, quick sort is recursively called, and the partition becomes the 

input array A. These three parts are denoted as Part I, Part II, and Part III respectively. 

During the partition process, elements of A are scanned from left to right and gradually putted into the three 

partitions. At any time, the unscanned elements remain together in a contiguous block, which is called Unscanned 

Block. Similarly, Part I, Part II, and Part III remain as contiguous blocks. Five indices are used to track the 

boundaries of the three partitions as well as the Unscanned Block. These pointers are left, L, K, G and right. Left 

points to the first element of A. This element is also at the left of P1 when Part I is non-empty. Right points to 

the last element of A. This element is also at the right of P2 when Part III is non-empty. L points to the first 

element of Part II. K and G point to the first and last elements of the Unscanned Block respectively. See Figure 

1. Once the partitioning is done, the algorithm calls itself recursively for Part I, Part II, and Part III. See Algorithm 

1 for the pseudo code of the algorithm and the partition function. 

< P1 P1 ≤ … ≤ P2 Elements not checked yet > P2 

  L  K  G   

Part I Part II  Unscanned Block Part III 

Fig. 1. A generic view of partitioning in algorithm 1. Green, grey and blue colors depict three partitions Parts I, II, III respectively. White 

color depicts elements that have not been checked yet (Unscanned Block). 

 

Function Partition (Array A) 

1. Select two pivots P1 and P2 as A[left] and A[right] respectively 

2. If P2 is less than P1, then swap them 

3. Divide A into the following three Parts I, II, and III. Initially, Parts I, II and III are empty and all 

elements of A are in Unscanned Block 

• Part I, A[left+1, …, L–1]: All elements less than P1  

• Part II, A[L, …, K–1]: All elements greater or equal to P1 and less or equal to P2  

• Part III, A[G+1, …, right–1]: All elements greater than P2 goes to Part III with indices  

4. In Unscanned Block, the next element A[K] from left to right is compared with the two pivots P1 and 

P2 and placed into the corresponding Parts I, II or III 

5. Then the pointers L, K, and G are adjusted accordingly 

6. Steps 4-5 is repeated as long as K ≤ G 

7. The last element of Part I is swapped with P1, and the first element of Part III is swapped with P2  
 

End of Function 

  

Algorithm 1 (Array A) 

1. If (size of A  27), then use Insertion sort and return  

2. Call Partition (A) 

3. Call Algorithm 1 (Part I) 

4. Call Algorithm 1 (Part II) 

5. Call Algorithm 1 (Part III) 

End of Algorithm 

Algorithm 1. Pseudo code of algorithm 1 and partition function 
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Our parallel algorithm: Our algorithm for parallelization works in Step 3-5 of the algorithm 1. The first two 

steps remain same. In steps 3-5, instead of executing the algorithm recursively for Parts I, II and III in sequence, 

our algorithm executes them in parallel if their size is bigger than a threshold and if there are available threads. 

The threshold is a value that can be chosen by a user. We choose this value to be 8192. This value is not an 

arbitrary value. Java uses this value as its own threshold to determine whether its sort function should run 

sequentially or parallelly [23]. 

As the algorithm 2 runs recursively, many parts of different size will be generated, and the available threads 

will be occupied. Therefore, at some time it may happen that for a recursive call of the algorithm 2, there may 

not be enough available threads for allocating all three Parts I, II and III. In that case, priority is given to the parts 

by their size. A part with bigger size will get higher priority. See Algorithm 2 for the pseudo code of the algorithm. 

 

Algorithm 2 (Array A) 

1. If (size of A  27), then use Insertion sort and return  

2. Call Partition (A) 

3. If (Part I size  8192), then Call Algorithm 1 (Part I) in the current thread 

4. If (Part II size  8192), then Call Algorithm 1 (Part II) in the current thread 

5. If (Part III size  8192), then Call Algorithm 1 (Part III) in the current thread 

6. If (Part I size or Part II size or Part III size > 8192) then 

7.     Call Algorithm 2 (largest part among Parts I, II, III with size > 8192) in a new thread (if thread available) 

8.     Call Algorithm 2 (second largest part among Parts I, II, III with size > 8192) in a new thread (if thread   

            available) 

9.     Call Algorithm 2 (smallest part among Parts I, II, III with size > 8192) in a new thread (if thread available) 

 

End of Algorithm 

Algorithm 2. Pseudo code of algorithm 2 

 

III. EXPERIMENTAL RESULTS 

We have implemented our algorithm in Java (JDK 8.2). We have run our algorithm in a computer having eight 

cores. The computer consists of a processor Intel Core i7-6700 @ 3.40 GHz with 8 cores and 8GB RAM. The 

operating system is Windows 10 Pro 64-bit.    

We have executed algorithm 1 in that computer with only one core by deactivating the remaining seven cores. 

We measure the running time of algorithm 1 with that setup. Then we have executed algorithm 2 in that computer 

with two cores (by deactivating six other cores), four cores (by deactivating four other cores), and eight cores. 

We have measured the running time of algorithm 2 in those setups. See Tables I-VI. 

We have generated random input of six different settings. In all settings, we take three different input sets of 

size 228, 229 and 230 respectively. The domain of the input values varies in different settings. In the first settings, 

the value of the inputs is randomly taken from 0 to 10. In the next two settings, the value domains are 0 to 100 

and 0 to 1000 respectively. Therefore, in these three settings, there are a lot of repeated values in the input. In the 

last three settings, the input values are all unique. In fourth, fifth and sixth settings, the input values are sorted in 

ascending order, sorted in descending order, and unsorted respectively. See Tables I-VI. 

 
 

 

 
 

} Steps 1-2 remain same as in algorithm 1 
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TABLE I  
EXPERIMENTAL RESULTS WITH RANDOM INPUT. INPUT VALUE DOMAIN 0-10 

Value domain: random 0-10 

Input size → 228 229 230 

#Processor 

 
Time (ms) Speedup Time (ms) Speedup Time (ms) Speedup 

1 3281 - 7812 - 15000 - 

2 3500 0.90 6422 1.22 13125 1.14 

4 2922 1.12 5812 1.34 10928 1.37 

8 2704 1.21 6656 1.17 10344 1.45 
 

 

TABLE II 
EXPERIMENTAL RESULTS WITH RANDOM INPUT. INPUT VALUE DOMAIN 0-102 

Value domain: random 0-102 

Input size → 228 229 230 

#Processor 

 
Time (ms) Speedup Time (ms) Speedup Time (ms) Speedup 

1 7283 - 12734 - 27445 - 

2 6468 1.13 12594 1.01 22443 1.22 

4 4578 1.59 10828 1.18 21219 1.29 

8 4125 1.77 6875 1.85 12453 1.20 
 

 

TABLE III 
EXPERIMENTAL RESULTS WITH RANDOM INPUT. INPUT VALUE DOMAIN 0-103 

Value domain: random 0-103 

Input size → 228 229 230 

#Processor 

 
Time (ms) Speedup Time (ms) Speedup Time (ms) Speedup 

1 11063 - 19547 - 38109 - 

2 7921 1.40 15465 1.26 31391 1.21 

4 6719 1.65 12071 1.62 22078 1.73 

8 5485 2.02 10828 1.81 17938 2.12 
 

 

TABLE IV  
EXPERIMENTAL RESULTS WITH UNIQUE VALUES IN ASCENDING ORDER 

Value domain: Unique ascending order 

Input size → 228 229 230 

#Processor 

 
Time (ms) Speedup Time (ms) Speedup Time (ms) Speedup 

1 3681 - 7453 - 15438 - 

2 3484 1.06 7422 1.00 14437 1.07 

4 2297 1.60 4141 1.80 7922 1.95 

8 1562 2.36 3172 2.35 6144 2.51 
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TABLE V 
EXPERIMENTAL RESULTS WITH UNIQUE VALUES IN DESCENDING ORDER 

Value domain: Unique descending order 

Input size → 228 229 230 

#Processor 

 
Time (ms) Speedup Time (ms) Speedup Time (ms) Speedup 

1 4156 - 8640 - 17344 - 

2 3813 1.09 8141 1.06 16140 1.07 

4 2297 1.81 4703 1.84 9140 1.90 

8 2085 1.99 4015 2.15 7656 2.27 

 

TABLE VI 
 EXPERIMENTAL RESULTS WITH RANDOM UNIQUE VALUES 

Value domain: Random unique  

Input size → 228 229 230 

#Processor 

 
Time (ms) Speedup Time (ms) Speedup Time (ms) Speedup 

1 26188 - 52875 - 112471 - 

2 25486 1.03 48620 1.09 85996 1.31 

4 20803 1.26 43116 1.23 58750 1.91 

8 11781 2.22 26172 2.02 36651 3.07 

 

From the experimental results, it can be seen that in most of the cases, the running time improves substantially 

as the number of processors is increased. Moreover, the speedup gets higher as the input size is increased. The 

speedup is computed by the following standard function [1]: 

speedup = (time of algorithm 1 in one core)/(time of algorithm 2 in multi core) 

For input in ascending order (Table IV) the speedup for higher number of processors is better than the input 

in descending order (Table V). This is due to the fact that the output will be in ascending order. So, the input in 

descending order will need some swapping to become ascending. Whereas, the input in ascending order are 

already sorted and need no swapping. Another observation is that the results in Tables IV, V and VI all assume 

that the input values are unique. So, the speedup in these three cases are similar, but they are higher than the 

previous three tables as they have repetition in input values. 

Among the six settings that we considered, the final setting is the most significant, because its input values 

are random and have no repetition. Here, the speedup is as much as 3.07. See Table VI. Figures 4 and 5 illustrate 

more about the improvement of running time and the speedup in this setting. These two figures illustrate that 

in the last setting the running time and the speedup is improved more for eight processors as well as for the 

highest input size. 
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Fig. 2. Run time improvement for random unique data 

 

Fig. 3. Speedup improvement for random unique data 

 

IV. DISCUSSION AND CONCLUSION 

From the experimental results it can be seen that as the input size and the number of processors are increased, 

our algorithm gets better performance. This suggests that the simple modification that we do in our algorithm to 

make the algorithm 1 parallel works fine for the recent days’ personal computers that have about two to eight 

cores. Not only that, in the near future, when the personal computers, laptops, mobile devices, and similar devices 

will have more processors, our algorithm can continue performing better and better. 

In this paper, we have presented a parallel version of the Yaroslavsky’s dual-pivot quick sort algorithm that 

has got much attention as a breakthrough to the classical quick sort algorithm. Our modification to make the 

algorithm parallel is simple. Our experiment is also done in recent days’ computers (PCs, laptops, etc.) that have 

small number of processors. The experimental results show that our algorithm runs much faster than the original 

Yaroslavsky’s quick sort algorithm.   
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There are many works that can be done in future. We have not concentrated to parallelize the partition function. 

If partition functions can be carefully parallelized, then more efficiency could be achieved. However, that may 

lose the simplicity of the parallel algorithm. There is also a scope to parallelize the quick sort algorithm that has 

more than two pivots [12]. 
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