

Ind. Journal on Computing Vol. 2, Issue. 2, Sept. 2017. pp. 47-54 doi:10.21108/indojc.2017.22.178

Optimasi Rute Angkutan Kota Secara Simultan Menggunakan Algoritma Exhaustive Search (Studi Kasus: Sepuluh Trayek Kota Bandung)

M. Hady Setiawan ^{#1}, Mahmud Imrona ^{#2}, Danang Triantoro Murdiansyah ^{#3}

School Of Computing, Telkom University

Jl. Telekomunikasi No.1, Ters. Buah Batu Bandung 40257 Indonesia

¹ hadysetiawan40@gmail.com ² mahmudimrona@telkomuniversity.ac.id ³ danang.triantoro@gmail.com

Abstract

The city transportation is one of the mass transportation that serves to transport passengers from the place of origin to the destination. Nowadays, people prefer to use private vehicles rather than mass transportation services caused by several factors, one of which is the spread of urban transport routes. Motor vehicle user. Therefore, urban transport route optimization is needed to solve the problem. There are two points of view in this study: the government (wanting a high level of route dispersion), and the driver (wanting high income). In this study, the optimization of ten urban transport routes using a complete search algorithm with attention to the spread of the route. The results of this study. An increase of 57,25%, and a 33,2% increase in route spread.

Keywords: Exhaustive Search Algorithm, Mapping, Optimization, Public Transportation

Abstrak

Angkutan kota merupakan salah satu sarana transportasi yang berfungsi untuk mengangkut penumpang dari tempat asal ke tempat tujuan. Saat ini, masyarakat lebih memilih menggunakan kendaraan pribadi dari pada menggunakan jasa angkutan kota yang disebabkan oleh beberapa faktor, salah satunya yaitu kurangnya ketersebaran rute trayek angkutan kota. Akibatnya penggunaaan kendaraan pribadi terutama kendaraan bermotor melebihi batas wajar sehingga menyebabkan kemacetan. Oleh karena itu, diperlukan optimasi rute trayek angkutan kota untuk mengatasi masalah tersebut. Ada dua sudut pandang yang diperhatikan dalam penelitian ini, yaitu: pemerintah (menginginkan tingkat ketersebaran rute trayek yang tinggi), dan sopir (menginginkan pendapatan yang tinggi). Pada penelitian ini dilakukan optimasi sepuluh trayek angkutan kota menggunakan algoritma *exhaustive search* dengan memperhatikan ketersebaran rute. Hasil dari penelitian ini menghasilkan peningkatan pendapatan sopir angkutan kota sebesar 57,25%, dan peningkatan ketersebaran rute sebesar 33,2 %.

Kata Kunci: Angkutan Kota, Algoritma Exhaustive Search, Mapping, Optimasi

I. PENDAHULUAN

Peningkatan populasi masyarakat dan perkembangan zaman, mengakibatkan kebutuhan alat transportasi menjadi besar. Namun, masyarakat lebih memilih menggunakan kendaraan pribadi dari pada angkutan kota. Hal ini menyebabkan penggunaan kendaraan pribadi terus meningkat dari tahun ke tahun terutama pada kendaraan bermotor [1]. Akibatnya menambah kemacetan hampir setiap ruas jalan khususnya di kota Bandung. Padahal pemerintah telah memberikan solusi untuk menghindari kemacetan dengan menyediakan angkutan kota.

Rendahnya minat masyarakat terhadap angkutan kota salah satunya diakibatkan oleh kurangnya ketersebaran rute angkutan kota khususnya di kota Bandung. Akibatnya terjadi penumpukan trayek pada beberapa ruas jalan. Penumpukan ini juga akan menyebabkan kemacetan karena "Nge-Tem" (proses menunggu penumpang) sembarangan dalam waktu yang lama ketika mencari penumpang [2], sehingga perjalanan menuju ke tempat tujuan menjadi lebih lama. Kurangnya ketersebaran rute trayek angkutan kota juga menyebabkan kerugian pada sopir angkutan kota karena jumlah angkutan kota lebih besar dari pada kebutuhan (over supply) [3], sehingga pendapatan sopir angkutan kota menjadi tidak maksimal.

Salah satu upaya yang harus dilakukan untuk mengatasi masalah tersebut adalah dengan melakukan optimasi rute trayek angkutan kota. Beberapa data yang digunakan untuk optimasi yaitu jarak, okupansi, dan peta jaringan jalan. Optimasi rute angkutan kota ini menggunakan algoritma *exhaustive search*. Algoritma ini biasa digunakan untuk mencari nilai yang optimal di semua kemungkinan-kemungkinan yang ada, contohnya pada permasalahan *knapsack problem*. Tetapi, kompleksitas waktu pada algoritma ini adalah eksponensial, sehingga cenderung untuk di hindari pada permasalahan dengan data yang besar. Namun, algoritma ini menghasilkan solusi yang terbaik [7].

II. KAJIAN PUSTAKA

Pencarian solusi dari objek-objek dengan kriteria tertentu dapat dilakukan dengan berbagai cara. Salah satu cara adalah dengan menggunakan algoritma *exhaustive search*. Algoritma ini mencari semua kombinasi dan permutasi dari objek-objek yang ada. Semakin banyak node kemungkinan solusinya semakin banyak [7]. Setelah semua kemungkinan solusi diperoleh, dilakukan pengecekan solusi mana yang paling optimal [8].

Algoritma ini merupakan gabungan dari *depth first search* dengan *backtracking*. *Backtracking* adalah pengecekan yang bergerak kebelakang menuju ke langkah awal untuk mengecek apakah solusi sudah optimum. Secara umum, tahapan algoritma ini adalah sebagai berikut [9] [8]:

- a) Mencari kemungkinan solusi.
- b) Melakukan pengujian untuk melihat apakah solusi yang dihasilkan mendekati solusi yang diharapkan atau memenuhi syarat.
- c) Jika solusi sudah memenuhi syarat, maka pencarian boleh berhenti, atau melakukan pencarian solusi lain untuk dibandingkan, dan dipilih solusi mana yang terbaik.

Persyaratan Pelayanan Angkutan Kota

Berdasarkan pada Surat Keputusan Dirjen Perhubungan Darat tahun 2002, mengenai angkutan umum dalam mengoprasikan kendaraan penumpang angkutan umum, terdapat beberapa hal yang harus dipenuhi untuk angkutan kota, yaitu [4]:

- a) Waktu tunggu pemberhentian rata-rata 5 10 menit, dan maksimum 10-20 menit.
- b) Jarak untuk mencapai perhentian di pusat kota 300-500 m untuk pinggiran kota 500-1000 m.

- c) Penggantian rute dan moda pelayanan, jumlah pergantian rata-rata 0-1, maksimum 2.
- d) Lama perjalanan ke dan dari tempat tujuan setiap hari, rata-rata 1,0-1,5 jam, maksimum 2-3 jam.
- e) Biaya perjalanan, yaitu persentase perjalanan terhadap pendapatan rumah tangga.

Tarif Angkutan Kota

Tarif angkutan kota adalah biaya yang harus dibayarkan oleh penumpang yang ingin menggunakan angkutan kota. Tarif angkutan kota di Bandung berkisar Rp.314,057. Tarif angkutan kota merupakan hasil perkalian antara tarif pokok dan jarak (kilometer) rata-rata satu perjalanan (tarif BEP) dan ditambah 10% untuk jasa keuntungan perusahaan, rumusnya adalah [4]:

$$Tarif = (Tarif pokok x Jarak rata - rata) + 10\%$$
 (1)

$$Tarif pokok = \frac{Total \ biaya \ pokok}{Tarif \ pengisian \ x \ Kapasitas \ kendaraan}$$
(2)

III. PERANCANGAN SISTEM

Pada penelitian ini, ada beberapa tahapan yang harus dilakukan yaitu pencarian data, optimasi dengan algoritma *exhaustive search*, dan terakhir analisis hasil. Flowchart perancangan sistem ini adalah sebagai berikut:

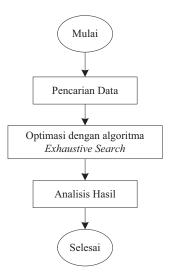


Fig. 1 Flowchart Perancangan Sistem

Data yang digunakan pada penelitian ini adalah jarak, okupansi, dan peta jaringan jalan. Pencarian data tersebut dilakukan dengan cara yang berbeda-beda. Peta jaringan jalan diperoleh dari aplikasi *google maps*. Peta yang sudah diperoleh dari aplikasi tersebut ditambahkan titik dan garis penghubung antar titik dengan menggunakan aplikasi *coreldraw* sehingga menjadi graf berarah. Proses ini disebut dengan *mapping*. Titik pada peta jaringan jalan tersebut merupakan titik persimpangan pada jalan-jalan kota Bandung. Data okupansi pada penelitian ini merupakan data hasil kriging menggunakan aplikasi *arcmaps* berdasarkan data okupansi perkecamatan pada penelitian yang telah dilakukan oleh Abel Ahmad Raharjanto. Data jarak diperoleh

dengan menggunakan aplikasi *google maps*. Pada implementasi juga dibutuhkan data *flag*. *Flag* adalah nilai dalam bentuk matriks yang merupakan representasi dari jumlah trayek yang melewati suatu ruas jalan. Pada saat awal nilai *flag* akan berjumlah nol, karena data ini hanya bisa didapatkan pada saat melakukan optimasi.

Exhaustive Search

Pada penelitian ini, implementasi algoritma *exhaustive search* digambarkan dalam diagram flowchart pada Fig. 2 berikut :

Fig. 2 Flowchart implementasi exhaustive search

Trayek yang dioptimasi pada penelitian ini berjumlah sepuluh. Setiap trayek terbagi menjadi dua rute, yaitu rute keluar dan rute masuk. Rute keluar yaitu jalur keberangkatan dari terminal asal ke terminal tujuan, sedangkan rute masuk yaitu jalur keberangkatan dari terminal tujuan ke terminal asal. Total dari semua rute trayek yang dioptimasi pada penelitian ini yaitu berjumlah dua puluh rute.

TABEL I. TRAYEK ANGKUTAN KOTA YANG DIOPTIMASI

NO	TRAYEK ANGKUTAN KOTA				
	Rute Keluar	Rute Masuk			
1	Abdul Muis – Cicaheum	Cicaheum - Abdul Muis			
2	Cicaheum - Cibaduyut	Cibaduyut - Cicaheum			
3	Cicaheum - Ciroyom	Ciroyom - Cicaheum			
4	Abdul Muis - Dago	Dago - Abdul Muis			
5	St Hall - Dago	Dago - St Hall			
6	Antapani - Ciroyom	Ciroyom - Antapani			
7	Ciroyom - Cikudapateuh	Cikudapateuh - Ciroyom			
8	Pasar Induk Caringin - Dago	Dago - Pasar Induk Caringin			
9	Sadang Serang - Ciroyom	Ciroyom - Sadang Serang			
10	Cibogo Atas - Halteu Andir	Halteu Andir - Cibogo Atas			

Implementasi algoritma exhaustive search pada penelitian ini pertama – tama mencari kemungkinan-kemungkinan solusi rute yang dilalui oleh angkutan kota dengan nilai *flag* pada setiap ruas jalan yang dipilih yaitu kurang dari tiga. Hal tersebut berguna agar rute baru yang dihasilkan merupakan rute yang memiliki ketersebaran tinggi untuk memenuhi tujuan pada penelitian ini. Kemudian dari hasil kemungkinan-kemungkinan solusi rute yang telah didapatkan tersebut dilakukan perhitungan rata-rata okupansi dan total jarak. Setelah itu, akan dipilih rute terbaik yang memiliki nilai rata-rata okupansi maksimum dengan syarat total jarak tidak boleh lebih dari 24,325 KM. Jarak tersebut merupakan jarak maksimal yang ada pada SK Trayek kota bandung. Setelah mendapatkan rute terbaik, kemudian nilai matriks *flag* akan ditambahkan nilai satu pada ruas jalan yang telah dilalui rute terbaik yang didapatkan tersebut. Hal yang sama juga dilakukan pada proses pencarian rute masuk dalam trayek yang sama. Jika suatu ruas jalan telah dilalui oleh rute keluar pada trayek yang sama, maka nilai matriks *flag* pada proses pencarian rute masuk tidak akan ditambahkan karena masih dalam satu trayek. Setelah pencarian rute keluar dan rute masuk pada suatu trayek selesai, dilanjutkan pada pencarian trayek selanjutnya dengan cara yang sama.

Setelah semua rute telah dilakukan pencarian, selanjutnya dilakukan perhitungan pendapatan bersih untuk melihat apakah rute baru lebih baik dari pada rute lama. Untuk mendapatkan pendapatan bersih adalah dengan mengalikan total jarak dengan tarif angkutan kota Bandung saat ini yaitu Rp.314,057, kemudian mengalikannya lagi dengan rata-rata okupansi dan dikurangi dengan 10%. 10% adalah pendapatan perusahaan.

IV. HASIL DAN PEMBAHASAN

Berikut adalah perbandingan antara rute baru dengan rute lama dari optimasi sepuluh trayek angkutan kota Bandung :

TABEL II. PERBANDINGAN ANTARA RUTE BARU DENGAN RUTE LAMA

NO	RUTE	LAMA			BARU			Kenaikan
		Rata-rata Okupansi	Jarak	Pendapatan	Rata-rata Okupansi	Jarak	Pendapatan	Pendapatan (%)
1	Abdul Muis – Cicaheum	3,611987872	15,45207	Rp15.776	3,689661667	19,76921	Rp20.617	30,69017
2	Cicaheum - Abdul Muis	3,412931375	14,99947	Rp14.470	3,65437192	20,31759	Rp20.986	45,03789
3	Cicaheum - Cibaduyut	3,328893214	18,90622	Rp17.789	3,661916447	21,81002	Rp22.574	26,8995
4	Cibaduyut - Cicaheum	3,59978592	17,32953	Rp17.633	3,6897334	22,12365	Rp23.073	30,85439
5	Cicaheum - Ciroyom	3,616937128	17,21416	Rp17.599	3,7012487	21,15224	Rp22.129	25,74127
6	Ciroyom - Cicaheum	3,664644119	13,77386	Rp14.267	3,708044579	21,92079	Rp22.975	61,03255
7	Abdul Muis - Dago	3,385974375	10,12895	Rp9.694	3,649525943	24,01106	Rp24.768	155,5052
8	Dago - Abdul Muis	3,511918387	9,40286	Rp9.334	3,762829043	21,20421	Rp22.552	141,6196
9	St Hall - Dago	3,453308885	7,37303	Rp7.197	3,675062931	23,99971	Rp24.930	246,4091
10	Dago - St Hall	3,569525619	10,43198	Rp10.525	3,745967879	21,23716	Rp22.486	113,6403
11	Antapani - Ciroyom	3,521133468	14,73814	Rp14.668	3,670846043	23,69248	Rp24.583	67,59132
12	Ciroyom - Antapani	3,51165839	12,26875	Rp12.178	3,660814205	23,95285	Rp24.785	103,5271
13	Ciroyom - Cikudapateuh	3,627598524	12,2334	Rp12.543	3,650213509	20,27844	Rp20.922	66,7963
14	Cikudapateuh - Ciroyom	3,577693159	13,35808	Rp13.508	3,66535402	12,08587	Rp12.521	-7,30705
15	Pasar Induk Caringin - Dago	3,625579271	18,43936	Rp18.896	3,589582822	23,64536	Rp23.991	26,95993
16	Dago - Pasar Induk Caringin	3,514810588	19,47172	Rp19.344	3,671972262	14,46942	Rp15.018	-22,3674
17	Sadang Serang - Ciroyom	3,541896259	12,97358	Rp12.988	3,712977067	17,8531	Rp18.736	44,25811
18	Ciroyom - Sadang Serang	3,389958269	11,20695	Rp10.738	3,619220625	21,60627	Rp22.103	105,8321
19	Cibogo Atas - Halteu Andir	3,213706917	5,54549	Rp5.037	3,362038944	9,26949	Rp8.809	74,86882
20	Halteu Andir - Cibogo Atas	3,282574333	4,78461	Rp4.439	3,337416333	8,63653	Rp8.147	83,52218
TOTAL		69,96251607	260,0322	Rp258.623	72,87879834	393,0355	Rp406.704	57,25755

Hasil dari penelitian ini terdapat dua rute yang tidak berhasil dioptimasi, yaitu rute Dago – Pasar Induk Caringin dan Cikudapateuh – Ciroyom terlihat pada Tabel II. Hal tersebut terjadi karena jalur optimal yang seharusnya dari kedua rute tersebut telah dilewati oleh trayek sebelumnya, mengingat bahwa setiap ruas jalan maksimal hanya boleh dilewati oleh tiga trayek dan tidak diperbolehkan untuk menghapus hasil dari trayek sebelumnya karena proses dilakukan secara berurutan. Namun secara keseluruhan, optimasi sepuluh trayek angkutan kota ini dapat dikatakan berhasil karena total nilai rata-rata okupansi, jarak, dan pendapatan pada rute baru lebih besar dari pada rute lama.

Berikut jumlah ruas jalan yang di lewati rute baru dan rute lama yang menunjukan tingkat ketersebaran :

TABEL III. JUMLAH RUAS JALAN YANG DILEWATI RUTE BARU DAN RUTE LAMA

No	D-4	Jumlah	Ruas Jalan	17 11 (0/)	
	Rute	Lama	Baru	Kenaikan (%)	
1	Abdul Muis – Cicaheum	39	48	23,07692	
2	Cicaheum - Abdul Muis	40	50	25	
3	Cicaheum - Cibaduyut	28	38	35,71429	
4	Cibaduyut - Cicaheum	25	50	100	
5	Cicaheum - Ciroyom	47	60	27,65957	
6	Ciroyom - Cicaheum	42	57	35,71429	
7	Abdul Muis - Dago	39	70	79,48718	
8	Dago - Abdul Muis	31	70	125,8065	
9	St Hall - Dago	42	72	71,42857	
10	Dago - St Hall	26	58	123,0769	
11	Antapani - Ciroyom	47	46	-2,12766	
12	Ciroyom - Antapani	41	39	-4,87805	
13	Ciroyom - Cikudapateuh	42	57	35,71429	
14	Cikudapateuh - Ciroyom	44	51	15,90909	
15	Pasar Induk Caringin - Dago	48	73	52,08333	
16	Dago - Pasar Induk Caringin	51	42	-17,6471	
17	Sadang Serang - Ciroyom	54	45	-16,6667	
18	Ciroyom - Sadang Serang	52	56	7,692308	
19	Cibogo Atas - Halteu Andir	12	18	50	
20	Halteu Andir - Cibogo Atas	12	15	25	

Tabel III menunjukan tingkat ketersebaran rute lama dan rute baru berdasarkan jumlah ruas jalan. Ada beberapa rute yang mengalami penurunan tingkat ketersebaran setelah di optimasi, yaitu rute Antapani – Ciroyom, Ciroyom – Antapani, Dago - Pasar Induk Caringin, dan Sadang Serang – Ciroyom. Namun secara keseluruhan, rute baru memiliki tingkat ketersebaran lebih tinggi dari pada rute lama.

V. KESIMPULAN

Algoritma *exhaustive search* dapat digunakan untuk permasalahan optimasi rute angkutan kota karena mampu memberikan hasil yang baik. Walaupun terdapat dua rute yang tidak berhasil teroptimasi yaitu rute Dago – Pasar Induk Caringin dan Cikudapateuh – Ciroyom. Kelemahan dari algoritma *exhaustive search* adalah waktu eksekusi yang begitu besar. Namun masih tepat digunakan karena pembuatan rute dilakukan lima tahun sekali, dan algoritma ini menghasilkan rute baru yang lebih baik dari rute lama secara keseluruhan karena menghasilkan kenaikan pendapatan sebesar 57,25%, dan ketersebaran rute meningkat sebesar 33,2%.

REFERENCES

- [1] A. d. Rozari and Y. H. Wibowo, "FAKTOR-FAKTOR YANG MENYEBABKAN KEMACETAN LALU LINTAS DI JALAN," Surabaya.
- [2] E. Kurniawan, "Penentuan Rute Angkutan Kota Optimal Menggunakan Analytical Hierarchy Process dan Algoritma Bellman-Ford," Bandung, 2015.
- [3] A. A. Putra, Analisis Keseimbangan Jumlah Armada Angkutan Umum, MKTS, 2013.
- [4] Direktur Jendral Perhubungan Darat, "PEDOMAN TEKNIS PENYELENGGARAAN ANGKUTAN PENUMPANG UMUM DI WILAYAH PERKOTAAN DALAM TRAYEK TETAP DAN TERATUR," JAKARTA, 2002.
- [5] infoBDG, "http://www.infobdg.com/," [Online]. Available: http://www.infobdg.com/v2/info-kota/transportasi/trayek-angkot-bandung/. [Accessed 03 November 2016].
- [6] R. Munir, "Graf," in Matematika Diskrit Revisi Edisi Kelima, Bandung, Informatika, 2012, pp. 353 358, 412.
- [7] M. P. Wulandari, H. Lutfi and D. Rahardjo, "Algoritma Exhaustive Search sebagai Pencari Solusi Terbaik," Bandung.
- [8] L. Hui and C. Yonghui, "Study of Heuristic Search and Exhaustive Search in Search Algorithms of the Structural Learning," China, 2010.
- [9] R. Adipranata, F. Soedjianto and W. Tjondro, "Perbandingan Algoritma Exhaustive, Algoritma Genetika Dan Algoritma Jaringan Syaraf Tiruan Hopfield Untuk Pencarian Rute Terpendek," Surabaya.
- [10] WaliKota Bandung, "SK Trayek MPU Kota Bandung," 2008.
- [11] P. K. Bandung, "Penetapan Tarif Angkutan Penumpang Umum di Kota Bandung," Pemerintah Kota Bandung, Bandung, 2016.
- [12] S. Walsen, "Kajian Biaya Operasional Kendaraan Umum Jalur Terminal Mardika Air Salobar di Kota Ambon," Teknik Sipil, vol. III, pp. 1-14, 2014.