Web-Based Formaldehyde Detection System in Chickens using IOT and Fuzzy Logic

Authors

  • Azizurahman Arafah Mufti Telkom University
  • Siti Amatullah Karimah
  • Hilal Hudan Nuha
  • Endang Rosdiana

DOI:

https://doi.org/10.21108/ijoict.v10i1.885

Keywords:

esp8266, Formalin, IoT, TCS3200, Schiff reagent

Abstract

Chicken is a widely consumed source of animal protein globally, valued for its high protein content and essential nutrients. Ensuring the freshness of chicken meat is crucial to guarantee its healthiness and prevent harm to consumers. Unfortunately, there are concerns about the use of hazardous substances like formaldehyde by some traders for meat preservation. Formalin, a clear liquid with a pungent odor, is commonly utilized as a food preservative. To address the misuse of formaldehyde in broiler chickens, an innovative solution is proposed involving IoT technology and Fuzzy Logic. The developed formaldehyde detection system employs an ESP8266 microcontroller and a TCS3200 sensor to assess color variations in chicken meat samples mixed with Schiff's reagent. The TCS3200 sensor detects color changes, and the ESP8266 Microcontroller converts measurements into RGB basic colors. Calibration of the sensor yielded a 98.30% relative accuracy at a 3 cm distance. Fuzzy Logic is then applied to determine formaldehyde levels, displayed on an LCD screen. The tool exhibits a 95% reliability for achieving a 0 ppm level, 93% for 40 ppm, 92% for 80 ppm, and 100% for 200 ppm

Downloads

Download data is not yet available.

References

[1] A. Rifa’i, E. Citra Yanizar, I. Dwisaputra, A. Febriansyah, P. Manufaktur, and N. Bangka, “Rancang Bangun Alat Pendeteksi Kandungan Formalin Pada Makanan Berbasis Internet of Things,” Pros. Semin. Nas. Inov. Teknol. Terap., vol. 2, no. 02, pp. 15–21, 2022, [Online]. Available: https://snitt.polman-babel.ac.id/index.php/snitt/article/view/256
[2] F. Utaminingrum and E. Setiawan, “Sistem Klasifikasi Kualitas Daging Ayam menggunakan Metode K-Nearest Neighbors berbasis Arduino,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. vol 4 no 5, no. 5, pp. 1455–1461, 2020.
[3] V. Nugroho, E. Rosdiana, and A. Suhendi, “Pengembangan Alat Deteksi Kandungan Formalin Berbasis Mikrokontroler Pada Ayam Menggunakan Sensor Warna Tcs3200,” E-Proceeding Eng., vol. 10, no. 1, pp. 114–118, 2023.
[4] Mariza Wijayanti, “Prototype Smart Home Dengan Nodemcu Esp8266 Berbasis Iot,” J. Ilm. Tek., vol. 1, no. 2, pp. 101–107, 2022, doi: 10.56127/juit.v1i2.169.
[5] T. D. Toan and Y. D. Wong, “Fuzzy logic-based methodology for quantification of traffic congestion,” Phys. A Stat. Mech. its Appl., vol. 570, p. 125784, 2021, doi: 10.1016/j.physa.2021.125784.
[6] H. Andrianto, Suhardi, A. Faizal, N. Budi Kurniawan, and D. Praja Purwa Aji, “Performance evaluation of IoT-based service system for monitoring nutritional deficiencies in plants,” Inf. Process. Agric., vol. 10, no. 1, pp. 52–70, 2023, doi: 10.1016/j.inpa.2021.10.001.
[7] G. Marques and R. Pitarma, “MHealth: Indoor environmental quality measuring system for enhanced health and well-being based on internet of things,” J. Sens. Actuator Networks, vol. 8, no. 3, 2019, doi: 10.3390/jsan8030043.
[8] J. Á. Ariza and M. P. Joshua, “Low-Cost Assistive Technologies for Disabled People Using Open-Source Hardware and Software?: A Systematic Literature Review,” IEEE Access, vol. 10, pp. 124894–124927, 2022, doi: 10.1109/ACCESS.2022.3221449.
[9] M. Schrepp and J. Thomaschewski, “Design and Validation of a Framework for the Creation of User Experience Questionnaires,” Int. J. Interact. Multimed. Artif. Intell., vol. 5, no. 7, pp. 88–95, 2019, doi: 10.9781/ijimai.2019.06.006.
[10] E. J. Davis and B. H. Clowers, “Low-cost Arduino controlled dual-polarity high voltage power supply,” HardwareX, vol. 13, pp. 1–14, 2023, doi: 10.1016/j.ohx.2022.e00382.
[11] Y. Thepchuay, W. Chairit, N. Saengsane, P. Porrawatkul, and R. Pimsen, “Simple and green colorimetric method for the detection of formaldehyde in vegetable samples,” J. Food Compos. Anal., vol. 111, pp. 1–8, 2022, doi: 10.1016/j.jfca.2022.104623.
[12] A. Baldelli, M. Jeronimo, M. Tinney, and K. Bartlett, “Real-time measurements of formaldehyde emissions in a gross anatomy laboratory,” SN Appl. Sci., vol. 2, no. 4, pp. 1–13, 2020, doi: 10.1007/s42452-020-2569-7.

Downloads

Published

2024-07-29

How to Cite

Arafah Mufti, A., Siti Amatullah Karimah, S.T., M.T., Hudan Nuha, H., & Rosdiana, E. . (2024). Web-Based Formaldehyde Detection System in Chickens using IOT and Fuzzy Logic. International Journal on Information and Communication Technology (IJoICT), 10(1), 141–151. https://doi.org/10.21108/ijoict.v10i1.885

Issue

Section

Information System