Hoax COVID-19 News Detection Based on Sentiment Analysis in Indonesian using Support Vector Machine (SVM) Method

Authors

  • Alifia Shafira Student

DOI:

https://doi.org/10.21108/ijoict.v8i2.682

Keywords:

Detection, Hoax, Sentiment Analysis, Support Vector Machine, Twitter

Abstract

The increasing use of technology makes it easier for information media such as news to be disseminated and does not demand possibilities, there is a lot of hoax news spreading. Twitter is one of the media most frequently used by the public to access and disseminate information. This research will focus on detecting Indonesian language COVID-19 news taken from Twitter. Detection of hoax news can be assisted by using sentiment analysis, one of the uses of classification text. Support Vector Machine (SVM) can be used to perform sentiment analysis tasks. After getting the sentiment analysis results, the hoax detection process will use the Bag of Words. Bag of Words is a collection of word dictionaries for weighting words to determine specific labels. The built SVM model succeeded in classifying tweet repliessentiment with an average accuracy of 83.17% with a threshold of 35%. At the same time, the hoax detection process gets the best accuracy of 62.5% with a threshold of -5 or -6.

Downloads

Download data is not yet available.

References

“Hingga Awal 2022, Kominfo Temukan 9.546 Hoaks di Internet - Bisnis Tempo.co.†https://bisnis.tempo.co/read/1558213/hingga-awal-2022-kominfo-temukan-9-546-hoaks-di-internet (accessed Dec. 28, 2022).

“Kementerian Komunikasi dan Informatika.†https://www.kominfo.go.id/content/detail/12008/ada-800000-situs-penyebar-hoax-di-indonesia/0/sorotan_media (accessed Dec. 28, 2022).

I. Fredy Ferdiansyah, “LAMPIRAN 62 Hoax Detection Analysis Using Support Vector Machine, Naive Bayes, Random Forest and K-Nearest Neighbor Algorithm On Covid-19 Vaccine News On Twitter.â€

F. Ismayanti and E. B. Setiawan, “Deteksi Konten Hoax Berbahasa Indonesia di Twitter Menggunakan Fitur Ekspansi dengan Word2Vec.â€

C. S. Sriyano and E. B. Setiawan, “Pendeteksian Berita Hoax Menggunakan Naive Bayes Multinomial Pada Twitter dengan Fitur Pembobotan TF-IDF.â€

O. Ajao, D. Bhowmik, and S. Zargari, “Sentiment Aware Fake News Detection On Online Social Networks,†2019.

S. Nasrin, P. Ghosh, S. M. Mazharul, H. Chowdhury, and S. A. Hossain, “Fraud detection of Facebook business page based on sentiment analysis,†2019. [Online]. Available: https://www.researchgate.net/publication/331036609

I. Mumu, M. #1, and E. B. Setiawan, “The Effect of Information Gain Feature Selection for Hoax Identification in Twitter Using Classification Method Support Vector Machineâ€, doi: 10.21108/indojc.2020.5.2.499.

A. Fauzi, E. B. Setiawan, and Z. K. A. Baizal, “Hoax News Detection on Twitter using Term Frequency Inverse Document Frequency and Support Vector Machine Method,†in Journal of Physics: Conference Series, May 2019, vol. 1192, no. 1. doi: 10.1088/1742-6596/1192/1/012025.

A. M. Pravina, I. Cholissodin, and P. P. Adikara, “Analisis Sentimen Tentang Opini Maskapai Penerbangan pada Dokumen Twitter Menggunakan Algoritme Support Vector Machine (SVM),†2019. [Online]. Available: http://j-ptiik.ub.ac.id

S. K. Dirjen et al., “Terakreditasi SINTA Peringkat 2 Hoax Detection on Twitter using Feed-forward and Back-propagation Neural Networks Method,†masa berlaku mulai, vol. 1, no. 3, pp. 648–654, 2017.

“Sentimen-Analisis-Bahasa-Indonesia-Menggunakan-Metode-Support-Vector-Machine/normalisasi.csv at main · Inazuna/Sentimen-Analisis-Bahasa-Indonesia-Menggunakan-Metode-Support-Vector-Machine.†https://github.com/Inazuna/Sentimen-Analisis-Bahasa-Indonesia-Menggunakan-Metode-Support-Vector-Machine/blob/main/normalisasi.csv (accessed Dec. 15, 2022).

T. Trisna Astono Putri, H. S. Warra, I. Yanti Sitepu, and M. Sihombing, “Analysis And Detection Of Hoax Contents In Indonesian News Based On Machine Learning,†2019.

R. Mahendrajaya, G. A. Buntoro, and M. B. Setyawan, Analisis Sentimen Pengguna Gopay Menggunakan Metode Lexicon Based Dan Support Vector Machine,†2019. [Online]. Available: http://studentjournal.umpo.ac.id/index.php/komputek

A. B. Prasetijo, R. R. Isnanto, D. Eridani, Y. A. A. Soetrisno, M. Arfan, and A. Sofwan, “Hoax detection system on Indonesian news sites based on text classification using SVM and SGD,†in Proceedings - 2017 4th International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE 2017, Jul. 2017, vol. 2018-January, pp. 45–49. doi: 10.1109/ICITACEE.2017.8257673.

A. S. Nugroho, A. B. Witarto, and D. Handoko, “Support Vector Machine-Teori dan Aplikasinya dalam Bioinformatika 1,†2003. [Online]. Available: http://asnugroho.net

R. Taqiuddin, F. A. Bachtiar, and W. Purnomo, “Opinion Spam Classification on Steam Review using Support Vector Machine with Lexicon-Based Features,†Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Nov. 2021, doi: 10.22219/kinetik.v6i4.1323.

B. E. Pasaribu, A. Herdiani, and W. Astuti, “Deteksi Fake Reviews Menggunakan Support Vector Machine.â€

U. Munirul, M. Mahendra Alvanof, and R. Triandi, “Analisa Dan Deteksi Konten Hoax Pada Media Berita Indonesia Menggunakan Machine Learning.â€

Downloads

Published

2023-01-03

How to Cite

Shafira, A. (2023). Hoax COVID-19 News Detection Based on Sentiment Analysis in Indonesian using Support Vector Machine (SVM) Method. International Journal on Information and Communication Technology (IJoICT), 8(2), 66–77. https://doi.org/10.21108/ijoict.v8i2.682

Issue

Section

Data Science