Estimation of Ordinary Kriging Method with Jackknife Technique on Rainfall Data in Malang Raya

Authors

  • Novia Nur Rohma STAI AL Yasini

DOI:

https://doi.org/10.21108/ijoict.v8i2.678

Keywords:

12345

Abstract

Geostatistics is a science that focuses on spatial data. In geostatistics, there is an estimation method to handle variables whose values ​​vary with the change in location or place, which are called regionalized variables. The estimation method used to handle regionalized variables is called the kriging method. In the ordinary kriging method it is necessary to take into account the semivariogram. Rain is a process of falling water from the clouds to the earth. Rain is measured through rainfall. The purpose of this study was to determine estimation of the ordinary kriging method on normally distributed data and abnormally distributed data, and determine the best semivariogram. The data used is monthly rainfall data in Malang Raya for the period January 2016 to December 2016. From the monthly rainfall dataset, the data are normally distributed in January, February, March, April, May, June, August, September, October, November and December 2016, while the data are not normally distributed in July. Ordinary kriging with Jackknife method can be used to analyze data with normal distribution and data with abnormal distribution.

Downloads

Download data is not yet available.

References

[1] Cressie, N.A.C. Statistics For Spatial Data. John Wiley and Sons, Inc. New York . 1993
[2] Isaaks, E.H dan Srivastava, R.M.,. Applied Geostatistics. New York: Oxford University Press. 1989.
[3] Bohling, G. (2005). Kriging. http://people.ku.edu/~gbohling/cpe940. Tanggal akses 20 April 2016.
[4] Efron, B. dan Tibshirani, R.J. An Introduction to The Bootstrap. Chapman and Hall. New York. 1993.
[5] Oliver, M.A., dan Webster, R. Basic Steps in Geostatistics: The Variogram and Kriging. London: Springer. 2015.
[6] Nuarsa, I. W. Menganalisa Data Spasial dengan Arcview GIS 3.3 untuk Pemula. PT Elex Media Komputindo. Jakarta. 2004.
[7] Suprajitno, M. Pengantar Geostatistik. Jakarta: Universitas Indonesia. 2005.
.[8] Tatalovich, Z. 2005. A Comparison of Thiessen Polygon, Kriging, and Spline Models of UV Exposure. www.ucgis.org/summer2005/studentpapers/tatalovich.pdf. Tanggal Akses 5 Oktober 2016.
[9] Tarboton, K.C. Kriging of Regional Properties in The Western San Joaquin Valley. California. 1995.
[10] Wackernagel, H. 2003. Multivariate Geostatistics : An Introduction with Applications. Springer- Verlag Berlin Heidelberg. New York
[11] Fischer, M.M., dan Getis, A. Handbook of Applied Spatial Analysis. Springer. Jerman. 2010.
[12] Bailey, T. dan Gatrel, A. Interactive Spatial Data Analysis. Essex: Pearson Education Limited. 1995.
[13] Gandhi, V. 2010. Semivariogram Modeling. http://www-users.cs.umn.edu/~gandhi/course/CS870/g4_semivariogram_second_draft.pdf. Tanggal akses 25 April 2016.
[14] Gaetan, C. dan Guyon, X. Spatial Statistics and Modeling. New York: Springer Science+Business Media., LLC. 2010.
[15] Gribov, A., Krivoruchko, K., dan Ver Hoef, J. M. (2001). Modelling the Semivariogram: New Approach, Methods Comparison and Case Study. www.esri.com/sofware/arcgis/extensions/geostatistical/about/literature.html-19k-. Tanggal akses 2 September 2016.
[16] Pawitan, G. Analysis of Agregated Spatial Social data. Disertasi. Australia: University of Wollongong. 2001.

Downloads

Published

2022-12-28

How to Cite

Novia Nur Rohma. (2022). Estimation of Ordinary Kriging Method with Jackknife Technique on Rainfall Data in Malang Raya. International Journal on Information and Communication Technology (IJoICT), 8(2), 22–39. https://doi.org/10.21108/ijoict.v8i2.678