Regional Mapping Based on Tourism Destinations in West Java: K-Medoid Clustering Analysis

Authors

  • Nafis Almajid Universitas Bhayangkara Jakarta Raya
  • Prima Dina Atika Universitas Bhayangkara Jakarta Raya
  • Khairunnisa Fadhilla Ramdhania Universitas Bhayangkara Jakarta Raya

Keywords:

Tourism Destinations, Tourism, regional analysis, K-Medoid, West Java

Abstract

The growth of the tourism sector in West Java demands an optimal development strategy. This study aims to cluster regions in West Java based on the characteristics of their tourist destinations using the K-Medoid algorithm. This algorithm was chosen because of its superiority in producing optimal clusters and robustness to outliers. Data on tourist destination characteristics were analyzed using the K-Medoid algorithm and the Elbow method to determine the optimal number of clusters. As a result, three clusters with different characteristics were formed. The first cluster, "Medium potential and achievement", consists of 1 region with unoptimized potential for campsite tourism. The second cluster, "High potential and moderate achievement", consists of 25 regions with a diversity of attractions and a high number of visits. The third cluster, "Medium potential and high achievement", consists of 1 region with popular historical and cultural attractions and high visitation. The model evaluation showed a DBI score of 0.08, indicating good clustering quality. This research is expected to provide insights for the government and related stakeholders to formulate targeted tourism development policies in West Java. The K-Medoid algorithm helps identify certain patterns, providing deeper insights into regional differences in terms of tourism.

Downloads

Download data is not yet available.

References

[1] Badan Pusat Statistik, “Perkembangan Pariwisata April 2024,” Berita Resmi Statistik. Accessed: Jun. 03, 2024. [Online]. Available: https://www.bps.go.id/id/pressrelease/2024/06/03/2351/perkembangan-pariwisata-april-2024.html

[2] A. Neva and F. Dikananda, “Penerapan Metode K-Means Clustering dalam Mengelompokan Jumlah Wisatawan Asing di Jawa Barat,” JURNAL ALGOR, vol. 4, Mar. 2023.

[3] S. Y. Riska and L. Farokhah, “Perbandingan Hasil Evaluasi Algoritma K-Means dan K-Medoid Berdasarkan Kunjungan Wisatawan Mancanegara ke Indonesia,” INTEGER: Journal of Information Technology, vol. 8, pp. 1–8, Mar. 2023.

[4] I. Muthahharah and Z. Mar’ah, “Clustering Biplot on Tourist Visits in Indonesia,” International Journal of Engineering and Computer Science Applications (IJECSA), vol. 3, no. 1, pp. 43–50, Mar. 2024, doi: 10.30812/ijecsa.v3i1.3890.

[5] D. Andriani and et al, Perencanaan Pariwisata, 1st ed. Bandung: Widina Bhakti Persada Bandung, 2022.

[6] D. Masri and S. Kasnelly, “Data Mining Techniques are Being Used to Map the Number of Foreign Guests at Indonesian Star Hotels,” International Journal of Information System & Technology Akreditasi, vol. 5, no. 2, pp. 215–221, 2021, [Online]. Available: https://www.bps.go.id/indicator/16/310/1/sum-tamu-asing-pada-hotel-star.html

[7] J. Han, J. Pei, and H. Tong, Data Mining: Concepts and Techniques, 4th ed. Cambridge: Katey Birtcher, 2022.

[8] T. A. Munandar, Data Mining Menggunakan R: Teori dan Praktek, 1st ed. Serang: PT. Bale Damar Publishing, 2023.

[9] E. Tasia and M. Afdal, “Perbandingan Algoritma K-Means dan K-Medoids untuk Clustering Daerah Rawan Banjir di Kabupaten Rokan Hilir,” IJIRSE: Indonesian Journal of Informatic Research and Software Engineering, vol. 3, no. 1, pp. 65–73, Mar. 2023.

[10] C. Shi, B. Wei, S. Wei, W. Wang, H. Liu, and J. Liu, “A Quantitative Discriminant Method of Elbow Point for the Optimal Number of Clusters in Clustering Algorithm,” EURASIP J Wirel Commun Netw, vol. 2021, no. 1, Dec. 2021, doi: 10.1186/s13638-021-01910-w.

[11] D. Ayu, I. C. Dewi, and K. Pramita, “Analisis Perbandingan Metode Elbow dan Sillhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali,” 2019.

[12] I. Dokmanic, R. Parhizkar, J. Ranieri, and M. Vetterli, “Euclidean Distance Matrices: Essential theory, algorithms, and applications,” IEEE Signal Process Mag, vol. 32, no. 6, pp. 12–30, 2015, doi: 10.1109/MSP.2015.2398954.

[13] I. Firman Ashari, R. Banjarnahor, D. R. Farida, S. P. Aisyah, A. P. Dewi, and N. Humaya, “Application of Data Mining with the K-Means Clustering Method and Davies Bouldin Index for Grouping IMDB Movies,” Journal of Applied Informatics and Computing (JAIC), vol. 6, no. 1, pp. 2548–6861, 2022, [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC

[14] A. I. Ramadhan, P. D. Atika, and K. F. Ramdhania, “Analisis Clustering K-Means untuk Pemetaan Tingkat Pengangguran Terbuka di Provinsi-Provinsi Indonesia Tahun 2013-2023,” Journal of Students‘ Research in Computer Science, vol. 5, no. 2, pp. 109–122, Nov. 2024, doi: 10.31599/WBPYDB62.

[15] N. Hidayati, “Application of Cluster Analysis to Data Distribution of COVID-19 in Bengkulu Province,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 16, no. 2, pp. 743–750, Jun. 2022, doi: 10.30598/barekengvol16iss2pp743-750.

Downloads

Published

2025-03-11

How to Cite

Almajid, N., Dina Atika, P., & Fadhilla Ramdhania, K. (2025). Regional Mapping Based on Tourism Destinations in West Java: K-Medoid Clustering Analysis. International Journal on Information and Communication Technology (IJoICT), 10(2), 287–296. Retrieved from https://socjs.telkomuniversity.ac.id/ojs/index.php/ijoict/article/view/1011