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Abstract 

This study addresses the optimization of Convolutional Neural Network (CNN) and Deep Neural 

Network (DNN) hyperparameters for EEG emotion signal classification, a pivotal area in emotion 

classification systems. The dataset is divided into three ratios: 80:20, 70:30, and 60:40, with 

subsequent hyperparameter tuning. CNN achieves a peak accuracy of 98.36%, while DNN attains 

98.18%, both in the 80:20 scenario. Notably, differences in loss curves reveal the nuanced 

performance complexities of both models. The 80:20 data split proves most impactful, 

outperforming the 70:30 and 60:40 splits. The choice of employing both DNN and CNN stems from 

their complementary strengths. CNN excels in spatial feature extraction, suited for multidimensional 

EEG signals, while DNN proficiency lies in learning hierarchical representations for discerning 

intricate patterns in temporal EEG data. Integrating both architectures aim to harness their combined 

strengths, enhancing the robustness of the EEG emotion classification system.  
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I. INTRODUCTION 

lectroencephalogram Emotion, or EEG Emotion for short, is a neurological study that monitors human 

brain activity to identify and understand emotional changes. In this research, participants perform tasks or 

express emotions while being recorded with EEG. This data is used to recognize patterns of brain activity 

associated with various types of emotions [1]. This research has many applications in psychology, human-

computer interfaces, mental health, and the development of emotion technology, such as recognizing emotions 

in autonomous car drivers or assisting individuals with emotional disorders [2]. 

On the other hand, optimizing hyperparameters in machine learning models, such as Convolutional Neural 

Networks (CNN) and Deep Neural Networks (DNN), plays a crucial role in addressing challenges in processing 

EEG Emotion data. Careful tuning of hyperparameters not only improves model performance and accuracy but 

also minimizes the risk of overfitting and underfitting, which has a significant impact on the model's ability to 

generalize well on unseen data [3]. Furthermore, through hyperparameter optimization, we can produce 

computationally efficient models that can better adapt to the specific characteristics of EEG-based emotion 
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classification problems [4]. In this way, EEG Emotion technology can have a positive impact in various 

application fields, including healthcare, automation, and data analysis. 

Recent research in the development of classification models for emotion recognition based on EEG signals 

using deep learning has revealed the significant potential of Convolutional Neural Networks (CNN) [5] in 

extracting crucial spatial features from EEG data, Recurrent Neural Networks (RNN) such as Long Short-Term 

Memory (LSTM) [6] and Gated Recurrent Unit (GRU) [7] in handling temporal signals that change over time, 

and Deep Neural Networks [8] in general in integrating information from various levels of abstraction. All of 

these provide a diversity of approaches and techniques that can be employed to enhance accuracy and reliability 

in classifying emotions based on EEG data, which is becoming increasingly important across various 

applications. The advantage of deep learning in EEG emotion classification lies in its ability to automatically 

extract relevant features from complex EEG data and model more abstract relationships between these signals 

[9]. This enables deep learning to improve emotion classification accuracy to a higher level than traditional 

methods and address the challenges posed by high-dimensional EEG data containing intricate patterns.  

In the face of challenges in emotion recognition based on EEG signals, this research primarily aims to enhance 

the performance of Convolutional Neural Networks (CNN) and Deep Neural Networks (DNN) in emotion 

classification by optimizing key parameters. The research primarily focuses on the parameter tuning phase of 

these CNN and DNN models. Through meticulous adjustment of these crucial parameters, it is expected to yield 

more precise models in identifying brain activity patterns associated with various human emotions. This 

research not only has implications for understanding human emotions through EEG data analysis but also in 

improving technology's ability to recognize and respond to emotions in various contexts, such as human-

machine interfaces and applications in mental health. 

II. LITERATURE REVIEW 

In the study conducted by [10], the focus was on EEG-based emotion detection using publicly available data, 

employing a newly proposed method to recognize inner emotional states. In this endeavor, a supervised machine 

learning algorithm was specifically designed to identify various inner emotional states in a two-dimensional 

model. Electroencephalography (EEG) data were obtained from the DEAP and SEED-IV databases for the 

purpose of emotion detection. Prior to this, EEG signals had been preprocessed and subjected to Discrete 

Wavelet Transform to extract five relevant frequency bands. Various features such as power, energy, differential 

entropy, and time domain were extracted for further analysis. A channel-based SVM classifier was employed, 

and channel fusion was performed to detect the corresponding emotional states. The research results indicated 

classification rates of 74%, 86%, 72%, and 84% for four classes in the DEAP database, while the classification 

rates for the SEED-IV database were 79%, 76%, 77%, and 74%. These findings provide valuable insights into 

emotion recognition through EEG data using a machine learning approach.  

In order to identify EEG signals, this study [11] adopted the Discrete Wavelet Transform as well as machine 

learning techniques such as Recurrent Neural Networks (RNN) and k-Nearest Neighbor (kNN) algorithm. 

Initially, a channel selection method was used to make decisions. As a result, a final feature vector was 

constructed by integrating EEG segment features from these channels. Through the utilization of RNN and kNN 

algorithms, the final feature vectors associated with positive, neutral, and negative emotions were independently 

classified. The performance of both classification techniques was calculated and compared. By using RNN and 

kNN, the average overall accuracy of each was 94.844% and 93.438%, respectively. This indicates that both 

methods have a high potential for emotion recognition based on EEG signals. 

Emotion is a mental state accompanied by physiological changes, as well as physical, behavioral, and mental 

alterations. This study [12] describes the relationship between EEG signals, brain wave patterns, and emotion 

analysis related to PTSD. PTSD is associated with the brain's response to memories, thoughts, and emotions 

related to trauma. EEG signals are a means of examining the electrical potential of human emotions. This 

research addresses issues of reliability and the concealment of genuine emotional behavior, proposing an 

automatic CNN-LSTM technique with the ResNet-152 algorithm, which achieves an accuracy of 98%. 

This study [13] proposes an innovative approach in the emotion recognition system, utilizing EEG 

calculations from various channels with a developed method of entropy known as Multivariate Multiscale 

Modified Distribution Entropy (MM-mDistEn). This approach is combined with an Artificial Neural Network 
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(ANN)-based model. The proposed system has been successfully tested using two different datasets, achieving 

higher accuracy rates compared to existing methods. In the GAMEEMO dataset, an average accuracy of 

95.73% ± 0.67 for valence and 96.78% ± 0.25 for arousal was attained. Additionally, for the DEAP dataset, the 

average accuracy percentage reached approximately 92.57% ± 1.51 for valence and 80.23% ± 1.83 for arousal. 

III. RESEARCH METHOD 

A. Proposed Methodology 

In the research methodology, the applied steps involve the use of a structured framework to guide each stage 

of the study. The research framework utilized, as depicted in Figure 1, consists of several phases. The initial 

step involves a literature review, which includes the evaluation of recent studies within the last 1 to 5 years. 

The subsequent phase is the data preparation stage, in which the EEG Emotion dataset containing more than 

2,131 data samples is employed. Following this, the data preprocessing phase is conducted by converting data 

categories or labels into numerical representations. Emotion classification is performed using CNN and DNN, 

with parameter tuning to obtain the best model with the highest accuracy. The classification process comprises 

three stages: training, testing, and validation. Finally, an analysis of the experimental results is carried out, and 

conclusions are drawn based on the findings obtained from this research. 

 

Fig. 1. Proposed Methodology 

B. Data Preparation 

This study involved training and testing an EEG Emotion dataset consisting of 2549 variables and 2131 rows 

of data. In this dataset, there are 2548 variables containing EEG signal data and one variable serving as the 

classification label. The data were collected from two participants, one male and one female, to determine 

neutral, positive, and negative emotional conditions. The data collection process was conducted using the Muse 

EEG headband equipped with dry electrodes, allowing for the recording of EEG activity at four location points: 

TP9, AF7, AF8, and TP10 [2],[14]. Further details about this dataset are elaborated in Table 1, with the 

following specifications. Subsequently, the dataset was divided into training and testing data, as presented in 

Table 2. Figure 2 shows an example of the EEG dataset variables used.  
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TABLE I 

DATASET SPECIFICATIONS 

Data label Number of data 

Positive 708 

Negative 708 

Neutral 716 

Total 2132 

 
Fig. 2. Dataset Variables 

In the data preparation process, the subsequent step involves the examination of missing values, which 

encompasses the identification of any absent data points within the dataset and assessing the degree to which 

these omissions impact the data quality. 

TABLE II 

DATA SPLITTING 

Validation Data 

First validation Train data 80% and test data 20% 

Second validation Train data 70% dan test data 30% 

Third validation Train data 60% dan test data 40%  

 

C. Data Preprocessing 

Label transformation is a crucial part of this research's data preprocessing. Many machine learning algorithms 

necessitate labels in numerical format, and label transformation is utilized to convert text or categorical class 

labels into numeric representations. The label transformation process from the dataset is depicted in Figure 3. 

In the illustration, there are three classes originally presented as text: "Neutral" is converted into class 0, 

"Positive" into class 1, and "Negative" into class 2. 

Label Encoder plays a crucial role in data analysis and machine learning. This tool allows for the conversion 

of class labels from text or categorical form into numerical representations, facilitating processing, analysis, 

and model training. Many machine learning algorithms require labels in numeric form, making Label Encoder 

instrumental in aligning data with the requirements of these algorithms. Moreover, Label Encoder also aids in 

data compatibility across different tools and analysis environments. With numeric labels, data can be easily 

integrated with various data analysis software and used for a wide range of statistical analyses. Additionally, it 

assists in handling multi-class classification problems, addressing class imbalance issues, and enables the 

creation of informative data visualizations. Thus, Label Encoder is a vital component in the workflow of data 

analysis and machine learning [15]. 
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Fig. 3. Label Encoding 

D. Model Development 

The development of the model in this research consists of three stages: training, validation, and testing. In the 

training stage, the model is trained using the training dataset to generate an initial model. Subsequently, the 

validation stage is employed to evaluate the performance of the trained model using a separate validation 

dataset. This evaluation involves measuring various metrics, including accuracy, precision, recall, and F1-score, 

to ensure that the model can generalize well to unseen data. Once the model is deemed adequate in the validation 

stage, the final step is the testing stage, where the model is evaluated using an independent test dataset to 

measure its ultimate performance. The results from these stages will provide insights into the extent to which 

the developed model succeeds in the complex task of EEG emotion classification. 

1) Convolutional Neural Network 

Figure 4 illustrates the proposed architecture of the Convolutional Neural Network (CNN) used in this 

research. This CNN is designed specifically to process one-dimensional time series data with a length of 

2548. The architecture comprises various types of layers, including Conv1D layers employed to extract 

important features from the data using 256 filters and the tanh activation function. Each Conv1D layer is 

followed by Batch Normalization for speeding up training and model optimization. Additionally, 

MaxPooling1D is used to reduce the data's dimensionality and produce a more compact representation. This 

convolution process is repeated with several Conv1D layers, each having a decreasing number of filters. 

After the convolution process is completed, the data is flattened into a one-dimensional vector and passed 
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through Dense layers with 'tanh' activation and dropout to prevent overfitting. This model has three neurons 

in the output layer with softmax activation used for generating class predictions. The proposed CNN architecture 

can be shown in figure 4. 

Input Layer

Neuron: 2548

Dataset EEG

Filter: 256

Kernel: 10

Tanh

Batch Normalization

Filter: 256

Kernel: 10

Tanh

Batch Normalization

Filter: 256

Kernel: 10

Tanh

Batch Normalization

Neuron: 3

Softmax

Filter: 256

Kernel: 10

Tanh

Batch Normalization

Conv Layer 1 Conv Layer 2 Conv Layer 3 Conv Layer 4

Output Layer

Maxpooling: 2

Maxpooling: 2Flatten

Neuron: 128

Tanh

Dropout: 0.5

Dense Layer 1

Neuron: 128

Tanh

Dropout: 0.5

Dense Layer 2

 

Fig. 4. Proposed CNN architecture 

2) Deep Neural Network 

In Figure 5, the architecture of the proposed Deep Neural Network (DNN) model in this study is 

depicted, designed for classification tasks using artificial neural networks. This DNN consists of multiple 

layers with various neurons and different activation functions. Each layer includes a Dense layer with fully 

connected layer, Batch Normalization for faster training, and Dropout to reduce overfitting. The ReLU 

activation function is employed within these layers. This model incorporates three output neurons used for 

classifying three emotion classes. In summary, this code snippet illustrates the architecture of the DNN 

model to be utilized for classifying EEG data into three emotion classes. 

Input Layer

Neuron: 2548

Dataset EEG

Neuron: 256

ReLU

Batch Normalization

Dropout: 0.25

Neuron: 256

ReLU

Batch Normalization

Dropout: 0.25

Neuron: 128

ReLU

Batch Normalization

Dropout: 0.25

Neuron: 3

Softmax

Neuron: 64

ReLU

Batch Normalization

Dropout: 0.25

Neuron: 128

ReLU

Batch Normalization

Dropout: 0.25

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

Hidden Layer 4Hidden Layer 5Output Layer

 

Fig. 5. Proposed DNN architecture 

3) Confusion Matrix Multilabel 

In this research, a multilabel confusion matrix is employed as the primary evaluation tool to assess the 

performance of the developed multilabel classification model. This confusion matrix allows researchers to 

identify and measure evaluation metrics such as precision, recall, and F1-score for each label class present 

in the data, as indicated in equations 1-4, because each sample in the dataset can have more than one possible 
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label. Therefore, the multilabel confusion matrix provides a more comprehensive understanding of how well 

the model can handle complex multilabel classification problems. The results of this analysis will serve as 

a crucial guide in evaluating and improving the model to deliver more accurate and relevant outcomes within 

the context of this research, as illustrated in Label 0 in Table 3, Label 1 in Table 4, and Label 2 in Table 5. 

E. Tuning Parameter 

In this study, hyperparameter optimization for the performance of CNN and DNN is conducted to obtain the 

best model. The hyperparameter tuning process involves experimenting with various parameter combinations 

such as learning rate, the number of layers, the number of neurons, and others, with the aim of improving the 

accuracy and generalization of models in classifying EEG emotion data into three different classes [16]. The 

results of this optimization will ensure that the CNN and DNN models used can effectively address 

classification challenges and provide optimal results. Additionally, with data splits of 80:20, 70:30, and 60:40, 

different models and accuracies are obtained, along with loss curves approaching 0, which serve as crucial 

indicators in evaluating model performance. Through careful exploration of hyperparameters and data split 

variations, this study aims to achieve optimal accuracy levels in classifying human emotions based on EEG 

data.  

TABLE III 

CONFUSION MATRIX LABEL 0 

Label 0 
Actual 

0 1 2 

Prediction 

0  TPi FPi FPi 

1  FNi  TNi  

2  FNi    TNi 

 

TABLE IV 

CONFUSION MATRIX LABEL 1 

Label 1 
Actual 

0 1 2 

Prediction 

0  TNi  FNi   

1 FPi  TPi FPi 

2    FNi  TNi 

TABLE V 

CONFUSION MATRIX LABEL 2 

Label 2 
Actual 

0 1 2 

Prediction 

0  TNi    FNi 

1   TNi  FNi 

2 FPi FPi  TPi 

Here are the basic evaluation steps from the confusion matrix for each label. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑

𝑇𝑃𝑖+𝑇𝑁𝑖
𝑇𝑃𝑖+𝐹𝑁𝑖+𝑇𝑁𝑖+𝐹𝑃𝑖

𝑙
𝑖=1

𝑙
∗ 100%     (1) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑇𝑃𝑖

𝑙
𝑖=1

∑ (𝐹𝑃𝑖+𝑇𝑃𝑖)𝑙
𝑖=1

∗ 100%      (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
∑ 𝑇𝑃𝑖

𝑙
𝑖=1

∑ (𝑇𝑃𝑖+𝐹𝑁𝑖)𝑙
𝑖=1

∗ 100%     (3) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
      (4) 

 

 

IV. RESULTS AND DISCUSSION 

In this study, a comparison of the performance between CNN and DNN for EEG Emotion classification tasks 

was conducted by optimizing their hyperparameters. The results showed that CNN achieved the highest 

accuracy, especially when the data was divided in an 80:20 ratio. Furthermore, CNN also demonstrated 

outstanding performance by achieving precision, recall, and f1-score values close to 100 for label 1 in all data 

splitting schemes. However, the overall performance of both models did not differ significantly, with both 

showing good performance. Additional evidence of this can be seen from the loss curves approaching a value 

of 0 for both models. 

 
(a) Accuracy curve CNN 80:20   (b) Accuracy curve DNN 80:20 

 
(c) Accuracy curve CNN 70:30    (d) Accuracy curve DNN 70:30 

 

 
(e) Accuracy curve CNN 60:40    (f) Accuracy curve DNN 60:40 

Fig. 6. The Accuracy Performance Curve of CNN and DNN 
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The improvement in accuracy reflects the ability of CNN and DNN models to learn and adapt to patterns in 

the data gradually, as visually demonstrated in Figure 6. Although both models did not immediately reach the 

optimal level of accuracy at the beginning of the training, through continuous iterations, both models managed 

to produce increasingly accurate predictions for complex EEG Emotion data. This emphasizes that through 

continuous training and careful hyperparameter tuning, the performance of models in such classification tasks 

can be significantly enhanced. 

In this research, the loss curve is used as a crucial evaluation tool to measure the performance of CNN and 

DNN models during the training process, as can be seen in Figure 7. The loss curve helps to understand how 

well both models can minimize the difference between their predictions and the complex EEG Emotion data. 

By monitoring the loss curve, this study can identify the point where the models start to experience overfitting 

or underfitting, leading to better hyperparameter tuning.  

 

 
(a) Loss curve CNN 80:20    (b) Loss curve DNN 80:20 

 
(c) Loss curve CNN 70:30    (d) Loss curve DNN 70:30 

 
(e) Loss curve CNN 60:40    (f) Loss curve DNN 60:40 

Fig. 7. The Loss Performance Curve of CNN and DNN 

Furthermore, the loss generated in this research is already approaching 0, which means that the CNN and 

DNN models have successfully reduced prediction errors significantly during the training process. Thus, the 

loss curve plays a role in ensuring that CNN and DNN models can effectively learn from the training data and 

make accurate predictions regarding human emotions. It is noteworthy that the loss curve of the DNN is 

smoother compared to the CNN, indicating a more gradual convergence of the DNN model during training. 

This suggests that the DNN model exhibits a steadier optimization process and experiences less fluctuation in 

prediction errors. 
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TABLE VI 

EVALUATION MODEL CNN  

Class 

Label 
Precision Recall 

F1-  

Score  

1 
0.97 0.97 0.97 

2 
1.00 1.00 1.00 

3 
0.98 0.97 0.98 

 

TABLE VIII 

EVALUATION MODEL CNN (SPLIT DATA 70:30) 

Class 

Label 
Precision Recall 

F1-  

Score  

1 
0.96 0.96 0.96 

2 
1.00 1.00 1.00 

3 
0.96 0.97 0.97 

 

TABLE X 

SPLIT DATA EVALUATION MODEL CNN  

Class 

Label 
Precision Recall 

F1-  

Score  

1 
0.94 0.98 0.96 

2 
1.00 1.00 1.00 

3 
0.98 0.95 0.96 

  

 

 

TABLE VII 

EVALUATION MODEL DNN (SPLIT DATA 80:20) 

Class 

Label 
Precision Recall 

F1-  

Score  

1 
0.99 0.97 0.98 

2 
0.99 0.98 0.99 

3 
0.96 0.99 0.97 

 

TABLE IX 

EVALUATION MODEL DNN (SPLIT DATA 70:30) 

Class 

Label 
Precision Recall 

F1-  

Score  

1 
0.98 0.97 0.97 

2 
0.99 0.99 0.99 

3 
0.96 0.97 0.97 

 

TABLE XI 

EVALUATION MODEL DNN (SPLIT DATA 70:30) 

Class 

Label 
Precision Recall 

F1-  

Score  

1 
0.96 0.98 0.97 

2 
0.98 0.99 0.98 

3 
0.97 0.95 0.96 

 

 

Additionally, the effectiveness of the model can also be gauged by examining the evaluation model described 

in Table 6 – Table 11. Both the CNN and DNN classification methods demonstrate commendable outcomes in 

precision, recall, and f1-score across all data split configurations, owing to the hyperparameter tuning proposed 

in this study. Moreover, detailed accuracy results for CNN and DNN, which attain noteworthy accuracy rates, 

are comprehensively presented in Table 12. This table offers a more holistic perspective on the performance of 

both models in the EEG Emotion classification task.  

TABLE XII 

THE ACCURACY  RESULTS 

Data 
Accuracy 

CNN DNN 

80:20 98,36% 98,13% 

70:30 97,66% 97,66% 

60:40 97,54% 97,19% 
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V. CONCLUSION 

In this research, we conducted a performance comparison between Convolutional Neural Network (CNN) 

and Deep Neural Network (DNN) in the task of classifying EEG Emotion data. We optimized the 

hyperparameters of both models and tested various data splitting scenarios to evaluate their performance. The 

experimental results showed that CNN achieved the highest accuracy, especially when the data was split in an 

80:20 ratio. However, DNN also demonstrated excellent performance, with no significant difference in 

accuracy. These results were further reinforced by the loss curves, which approached the value of 0 in both 

models, indicating that both successfully reduced prediction errors significantly during training. The importance 

of selecting the right data splitting was also revealed, with an 80:20 split tending to yield better results. In 

conclusion, both CNN and DNN have their respective advantages in the task of classifying EEG Emotion, and 

the choice of model depends on user preferences and the characteristics of the available data. 

Furthermore, the performance evaluation of both models was also assessed through the confusion matrix and 

precision, recall, and f1-score metrics. Both classification methods, CNN and DNN, exhibited satisfactory 

results in terms of performance evaluation for all optimized data splitting scenarios. DNN showed a smoother 

loss curve, indicating a more stable convergence during training. However, CNN remains a good choice, 

especially when high accuracy is a top priority. The results of this research provide valuable insights into the 

comparison between CNN and DNN in the EEG Emotion classification task, emphasizing the importance of 

hyperparameter tuning and proper data splitting in the context of analyzing complex data. 

 

DATA AND COMPUTER PROGRAM AVAILABILITY 

Data and program used in this paper can be accessed in the following site 

https://www.kaggle.com/datasets/birdy654/eeg-brainwave-dataset-feeling-emotions and 

https://github.com/jordan-bird/eeg-feature-generation.  
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