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Abstract 

Malang Raya is located between several mountains so that it has very varied geographical 

conditions, so it is possible that there are non-sampled locations for rainfall data. In general, 

rainfall in the area around the rain posts cannot be known with certainty because 

measurements are not made at every location. Ordinary kriging utilizes spatial values at 

sampled locations and variograms that show correlations between spatial points to predict 

values at other unsampled locations, where the predicted value depends on their proximity to 

the sampled locations. The jackknife method can solve the parameter estimation problem with 

a good degree of accuracy without regard to distribution assumptions. Kusumawardani 

conducted measurement simulations on the ordinary kriging method with the jackknife 

technique based on spherical and exponential variograms. Hardiansyah performed accuracy 

calculations on the ordinary kriging method with the jackknife technique based on 

exponential variograms. So this research was conducted on data with an unknown distribution 

assumption based on the ordinary kriging method approach with the jackknife technique 

based on spherical, exponential and Gaussian variograms. The result, the best exponential 

semivariogram in April, May, June, July, August, September, November and December. Best 

spherical semivariogram in February, March, May, June and October. Best gaussian 

semivariogram in January, May and June. Based on the RMSE value, jackknife kriging is 

good for interpolating normally and abnormally distributed data. 
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I. INTRODUCTION 

ata presented in the geographical position of an object, related to its location, shape and 

relationship in the earth's space is called spatial data. Geostatistics is a science that focuses 

on spatial data. The purpose of geostatistical analysis is to predict the spatially dispersed subsets of the 

measurement results so that interpolation can be performed on the data. In geostatistics there is an 

estimation method for handling variables that have varying values with changing locations or places 

which are called regionalized variables. The estimation method used to handle regionalized variables is 

called the kriging method. The kriging method was first introduced by Daniel Krige, a South African 

mining engineer around 1950 [3]. 

Ordinary kriging (classical kriging) is a method of calculating sample point estimation values 

and is the simplest kriging method. Ordinary kriging utilizes spatial values at sampled locations and 

variograms that show correlations between spatial points to predict values at other unsampled locations, 

where the predicted value depends on their proximity to the sampled locations. In Ordinary Kriging, 

estimating a variable value at a certain point is done by observing similar data in other areas. The weight 

in the ordinary kriging method is influenced by the variogram model, so the accuracy in selecting the 
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variogram model will provide a good estimate of the kriging method [4]. The variogram is a graph of 

variance versus distance (lag), and half of the variogram quantity is called a semivariogram. The 

semivariogram can be used to measure spatial correlation in the form of the variance of different 

observations at a location. There are several semivariogram models, the semivariograms that are often 

used are the spherical, exponential, and Gaussian semivariogram models [5]. 

Jackknife is a nonparametric and resampling technique that aims to determine the bias, standard 

error and confidence interval estimates of population parameters, such as: mean, median, proportion, 

correlation coefficient and regression, without always paying attention to distributional assumptions. In 

1949, Quenouille had introduced the jackknife method for estimating the bias of an estimator by 

removing an observation from the original sample. The sample obtained is used to calculate the value of 

the estimator. The jackknife method can also solve the problem of parameter estimation with a good 

degree of accuracy without regard to distribution assumptions [6]. 

The Greater Malang area is located between several mountains so that it has very varied 

geographical conditions, so it is possible that there are locations that are not sampled for rainfall data. In 

general, rainfall in the area around the rain posts cannot be known with certainty because measurements 

are not made at every location. 

 

II. LITERATURE REVIEW 

A. Geostatistics 

 Geostatistics is a statistical method used to see the relationship between variables measured at a 

certain point with the same variable measured at a point with a certain distance from the first point 

(spatial data) and used to estimate parameters in places where the data is unknown [7]. 

 

B. Spatial Data 

Spatial data is data that has georeferenced data with various attribute data in various spatial units 

[8]. There is a dependency between one location and another, so that the spatial data is dependent data 

because the data is collected from different locations and indicates the dependence between data 

measurements and location. Dependence will decrease if the locations between observations are more 

spread out [3]. The geostatistical method is optimal or has a high accuracy value when applied to 

normally distributed and stationary data [5]. 

 

1)  Kolmogorov Smirnov Normality Test 

The Kolmogorov Smirnov test is a test used to decide if there are samples from a population that are 

spread over a certain distribution. This test will compare the cumulative distribution of the sample with a 

certain cumulative distribution, in this case the normal cumulative distribution 

 

2) Stationarity 

According to Suprajitno [9], a spatial data is said to be stationary if the data does not contain a trend. 

Meanwhile, a spatial data is said to be non-stationary if the spatial data contains a trend, namely where 

the variables in the spatial data form a curve. Spatial data stationarity can be determined using plots as 

shown in Fig. 1. 

 

 
 

Fig. 1. An example of a Spatial Data Stationarity Plot [9] 



INTL. JOURNAL ON ICT VOL. 8, NO.2, DEC 2022 

 

24 

 

 

C.  Kriging Method 

Kriging is a geostatistical method that uses known values and semivariograms as weights to 

predict values at other locations that have not been measured. The predicted value of the kriging method 

is not the same as the original data, but varies and depends on the proximity of the location of the original 

data [10]. 

Kriging provides an estimate of the unknown value at each unsampled point and the error 

variance. Several steps in the kriging method are (1) analyzing data samples statistically, (2) creating 

variogram models, (3) creating autocorrelation models and covariance functions to estimate spatial 

autocorrelation values, (4) making interpolation results by predicting values at location whose value is 

unknown, and (5) analyze the variance value [11].  

Kriging estimator 𝑍̂(s) from 𝑍(𝑠) can be written as [5]: 

𝑍̂(𝑠) − 𝑚(𝑠) = ∑ 𝜆𝑖
𝑛
𝑖=1 [𝑍(𝑠𝑖) − 𝑚(𝑠𝑖)]                                                        (1) 

where: 

𝑠, 𝑠𝑖  : location for the estimate and one of the locations of the adjacent data 

𝑚(𝑠) : expected value of  𝑍(𝑠) 

𝑚(𝑠𝑖) : expected value of  𝑍(𝑠𝑖) 

𝑍(𝑠𝑖) : observed value at the point 𝑠𝑖  

𝑍̂(𝑠) : kriging estimator of  𝑍(𝑠𝑖) 

𝜆𝑖 : weight 𝑍(𝑠𝑖) for location estimation 𝑠 

𝑛 : the number of sample data used for estimation. 

 

The application of the kriging method is carried out with the assumption of stationarity in the 

average (𝜇) and variance (𝜎2), so that if the stationarity assumption is violated, kriging will produce a 

less precise predictive value. The purpose of kriging is to determine the value of the weighting coefficient 

𝜆𝑖 which minimizes the variance in the stated estimator: 

                         𝜎2(𝑠) = 𝑣𝑎𝑟{𝑍̂(𝑠) − 𝑍(𝑠)}                                                                                 (2) 

where: 

𝜎2(𝑠) : estimator variance 𝑍̂(𝑠) 

𝑍̂(𝑠) : kriging estimator of  𝑍(𝑠𝑖) 

𝑍(𝑠) : observed value at the point 𝑠𝑖  

 

with the estimate at each location being the difference in the true value of the estimator value 𝑍̂(s) with 

value 𝑍(𝑠) defined: 

𝜎2(𝑠) = 𝑉𝑎𝑟 [∑ 𝜆𝑖𝑍(𝑠𝑖) − 𝑍(𝑠)

𝑛

𝑖=1

]                                                                              (3) 

 

To make predictions with the kriging interpolation method, the two main things to do are to 

know the pattern of dependency relationships and to make predictions. To do this, kriging goes through 

two stages. The first stage is to create a variogram and covariance function to estimate the value of the 

relationship statistically (called spatial autocorrelation) which depends on the autocorrelation model 

formed. The second stage is predicting the value at a location whose value is not yet known. 

 

D. Variogram 

 According to Wackernagel [12], a variogram is a method of analyzing spatial data diversity 

based on distance measurements. Variogram analysis performs calculations at a number of locations and 

looks at the relationships between observations at various locations. The variogram is used to determine 

the distance at which the observed data values become independent or uncorrelated. The hypothesis used 

to determine the variogram is based on intrinsic stationarity. According to Fischer and Getis [13], the 

average value will change with the difference in the area, then the variance value will also change with 
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the wider area of observation. Thus, the covariance value cannot be obtained because the average value of 

μ is not known. Even though the average value is not constant, there will still be differences at each 

change in the lag distance so that the expected value will be 0.  

 

The equation of the variogram can be explained in the following equation: 

 

2𝛾(ℎ) = 𝑣𝑎𝑟[𝑍(𝑠 + ℎ) − 𝑍(𝑠)] 
2𝛾(ℎ) = 2𝜎2 − 2𝐶(ℎ) 

                                    𝛾(ℎ)    = 𝐶(0) − 𝐶(ℎ)                                                             (4) 

 

Where the covariance value meets the assumption of second-order stationarity. Then 𝐶(0)  is the 

covariance value at or the covariance value at a distance of 0 which is commonly called the variance. 

The equation of the variance is explained as follows: 

 

𝐶(0) = 𝐸[{𝑍(𝑠) − 𝜇}{𝑍(𝑠 + 0) − 𝜇}] 
                                    𝐶(0) = 𝜎2                                                                                   (5) 

 

From the information in equations (4) and (5), the autocovariance value can be calculated. The 

value of autocovariance depends on where 𝑍 it is measured. So to calculate the attachment between 

locations, the correlation value or correlation function can be calculated using the covariogram which is 

defined as: 

 

                            𝐶𝑜𝑟𝑟(𝑍(𝑠), 𝑍(𝑠 + ℎ)) =
𝐶(𝑠)

𝐶(0)
= 𝜌(𝑠)                                                    (6) 

 

Based on the equation (10), 𝛾(ℎ) is the semivariogram value at the h-th lag. The relationship of 

the correlogram, covariance and semivariogram is that the form of the correlogram will be similar to the 

shape of the curve of the covariance function and the shape of the semivariogram curve will look like the 

shape of the inverted covariant curve [5] as shown in Fig. 2 as follows: 

 

(a)               (b) 

Fig. 2. (a) Relationship between Covariance and Semivariogram, (b) Correlogram 

 

Covariance and semivariogram have an inverse relationship. If the covariance starts from the 

maximum 𝜎2 on ℎ = 0 descend towards 0, while the semivariogram starts from 0 and reaches a 

maximum 𝜎2. In the chorelogram, it can be seen that if the distance increases, the correlation becomes 

weaker. 

 

E. Semivariogram Modeling 

One tool that indicates the existence of spatial autocorrelation between data from a variable and 

functions as a measure of variance is called a semivariogram. Semivariograms are usually described in 

graphical form based on mathematical calculations [15]. Semivariogram is divided into 2, is: 

experimental Semivariogram and theoretical Semivariograms 
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I. Experimental Semivariogram 

Experimental semivariogram is also called cloud semivariogram. The semivariogram is 

calculated from the measured data and then plotted as a function of distance [16]. For example 𝑍(𝑠𝑖) is 

the measured value at the location 𝑖, whereas 𝑠𝑖  =  (𝑥𝑖 , 𝑦𝑖) is a vector containing spatial coordinates 𝑥, 𝑦 

dan ℎ =  𝑠1 –  𝑠2 is the distance vector between the points 𝑠1 to 𝑠2. So that the experimental 

semivariogram is formulated as: 

 

𝛾𝑖𝑗 = 0.5 Ε[𝑍(𝑠𝑖) − 𝑍(𝑠𝑖)]2                                                                                                                                      (7) 

 

For all possible distance pairs {(𝑠𝑖 , 𝑠𝑗)} for 𝑖, 𝑗 = 1, 2, 3, . . , 𝑛, then plotted as a function of 

distance ℎ = 𝑠𝑖 − 𝑠𝑗 formulated: 

|ℎ| = |𝑠𝑖 − 𝑠𝑗| = [(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2]
1
2                                                                       (8) 

where: 

𝑠𝑖  : location to -i 

𝑠𝑗  : location to -j 

𝑥𝑖  : longitude location to -i 

𝑥𝑗  : longitude location to -j 

𝑦𝑖   : latitude location to -i 

𝑦𝑗  : latitude location to -j  

 

The difficulty in the experimental semivariogram is to see patterns when the calculation involves 

up to thousands of points therefore, to overcome the difficulties a grouping stage is carried out on 𝑦𝑖𝑗 

based on the similarity of distances is called the binning process. The grouping process aims to facilitate 

interpretation [17]. 

The variogram model is defined as the variance of the difference between two observations at two 

different locations, while the semivariogram is half of the variogram value [18]. The estimated 

experimental variogram at a distance h can be written as follows: 

 

2𝛾(ℎ) =
1

𝑁(ℎ)
∑ [𝑍(𝑠𝑖 + ℎ) − 𝑍(𝑠𝑖)]2𝑁(ℎ)

𝑖=1                                                        (9) 

 

The experimental semivariogram is written as follows: 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [𝑍(𝑠𝑖 + ℎ) − 𝑍(𝑠𝑖)]2𝑁(ℎ)

𝑖=1                                                          (10) 

where:  

2𝛾 : variogram value with a distance of h 

𝛾(ℎ) : semivariogram value with distance h 

𝑍(𝑠𝑖) : observed value at the point 𝑠𝑖 

𝑍(𝑠𝑖 + ℎ) : observed value at the point 𝑠𝑖 + ℎ 

𝑁(ℎ)  : the number of pairs of points that have a distance h. 

 

II. Theoretical Semivariograms 

The experimental semivariogram has an irregular shape, making it difficult to interpret and does 

not directly use in interpretation. Furthermore, the experimental semivariogram value will be matched 

with the theoretical semivariogram model for use in estimation in order to obtain a smooth and continuous 

covariance pattern so that it can be used to derive the covariance matrix in kriging calculations [14]. 

In calculating the theoretical semivariogram required parameters to be used. The parameters used 

to find the theoretical semivariogram value are as follows: 

 

a. Nugget Effect (𝐶) 

The discontinuity at the center of the variogram with respect to the vertical line that jumps from 0 

at the center to the variogram value at the smallest distance separation is called the nugget effect [4]. 

According to Cressie [3], the Nugget effect is the estimation of a semivariogram at a distance of about 
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zero where the phenomenon is discontinuous around the starting point of the semivariogram. Reflects 

sampling error and analytical error.  

b. Sill (𝐶0 + 𝐶) 

 Sill is the stable period of a variogram that reaches the range [7]. Sill describes where the 

variogram becomes a flat area, that is, the variance does not experience an increase. The sill consists of 

two parts, namely the nugget effect (the intersection of the graph with the y-axis) and the partial sill (the 

sill that has been reduced by the nugget effect) [3]. 

c. Range (𝑎) 

Sill is the stable period of a variogram that reaches the range [7]. Sill describes where the 

variogram becomes a flat area, that is, the variance does not experience an increase. The sill consists of 

two parts, namely the nugget effect (the intersection of the graph with the y-axis) and the partial sill (the 

sill that has been reduced by the nugget effect) 𝑎√3. The distance at which the variogram reaches the sill 

value [3]. The theoretical semivariogram image can be seen in Fig 3. 

 

 
Fig. 3. Characteristics of the Semivariogram 

 

Theoretical semivariogram models that are often used [5]: 

• Spherical Model 

 

     𝛾(ℎ) = {
𝐶0 + 𝐶 (1.5 (

ℎ

𝑎
) − 0.5 (

ℎ

𝑎
)

3

) for h ≤  a

𝐶0 + 𝐶                                             𝑜𝑡ℎ𝑒𝑟𝑠
                     (11) 

 

where: 

h  : distance between samples 

𝐶0 + 𝐶  : sill 

𝑎  : range 

 

• Exponential Model 

 

The exponential model semivariogram has a very steep increase. The semivariogram form of the 

exponential model is formulated as follows: 

 

𝛾(ℎ) = {
𝑐0 + 𝑐 (1 − exp (

−3ℎ

𝑎
))  ℎ ≠ 0 

0                                         ℎ = 0
                    (12) 

• Gaussian Model 

 

The Gaussian Model Semivariogram is the quadratic form of the exponential. The semivariogram 

form of the Gaussian model is formulated as follows: 

 

𝛾(ℎ) = {𝑐0 + 𝑐 (1 − exp (
−3ℎ2

𝑎2 ))  ℎ ≠ 0

0                                           ℎ = 0
                           (13) 
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(a)                                              (b)          (c) 

 
Fig 4. (a) Spherical Model (b) Exponensial Model (c) Gausian Model 

 

The WLS method is the most widely used method because it pays more attention to distances 

that have a larger number of measurement point pairs, and gives greater weighting to smaller theoretical 

semivariogram values. Estimation of theoretical semivariogram parameters using the WLS method is 

carried out by determining the parameters 𝒂 and 𝝈𝟐 so as to minimize the equation [3].  

 

∑ |𝑵(𝒉(𝒋))| {
𝜸̂(𝒉(𝒋))

𝜸(𝒉(𝒋);𝜽)
− 𝟏}

𝟐
𝑲
𝒋=𝟏                                                                      (14) 

where: 

|𝑵(𝒉(𝒋))| : the number of pairs of measurement points in lag - 𝒋,    j=1,2,3,..., 𝑲 where 𝑲 is the 

amount of lag 

𝜸̂(𝒉(𝒋))  : experimental semivariogram values at lag  - 𝒋 

𝛾(ℎ(𝑗): 𝜃) : standard semivariogram value at lag  - 𝑗 lag with parameters 𝜃 = {𝑎, 𝜎2} 

 

F. Ordinary Kriging Method 

Ordinary kriging is the simplest kriging method found in geostatistics. Ordinary kriging assumes 

the population mean is unknown and constant. In ordinary kriging 𝑍(𝑠) is the average of 𝑍(𝑠) =

𝐸(𝑍(𝑠)), where 𝐸(𝑍(𝑠)) = 𝜇. 

Cressie [3] explains that ordinary kriging relates to spatial predictions with two assumptions: 

Model Assumptions: 

𝑍(𝑠) = 𝜇 + 𝑒(𝑠),   𝑒(𝑠) ∈ 𝐷 ⊂ 𝑅2 , 𝜇 unknown                                       (15) 

Predictive assumptions 

𝑍̂(𝑠) = ∑ 𝜆𝑖
𝑛
𝑖=1 𝑍(𝑠𝑖) with ∑ 𝜆𝑖

𝑛
𝑖=1 = 1                                         (16) 

where: 

𝑍̂(𝑠0)  : variable predictive value 𝑠 

𝑍(𝑠)  : actual value of the variable 𝑠 at location -i 

𝜇       : expectations from 𝑍(𝑠) 

𝑒(𝑠)  : error value of 𝑍(𝑠) 

𝜆𝑖      : weights that determine the size of distances and points 

𝐷     : random set in 𝑅2 

𝑅2     : real number 

𝑛 : the number of sample data used for estimation 

 

 



 

NOVIA NUR ROHMA 

ESTIMATION RAINFALL DATA IN MALANG RAYA USING ORDINARY KRIGING METHOD WITH JACKKNIFE TECHNIQUE 

29 

 

 

As for the properties of ordinary kriging, one of the goals of kriging is to produce the best linear 

unbiased estimator (BLUE). The following is an explanation of the ordinary nature of kriging: 

1) Linier 

Based on the equation (22) 𝑍̂(𝑠) has a linear estimator because the linear function of 𝑍(𝑠). If 

there are n measurements at a location 1, 2, . . . , 𝑛 then it can be stated 𝑍(𝑠1), 𝑍(𝑠2), . . . . , 𝑍(𝑠𝑛). Then make 

an estimate 𝑍(𝑠)at the non−sampled locations stated in 𝑍(𝑠0) based on the sampled data. So that the 

following equation will be produced : 

 

𝑍̂(𝑠0) = ∑ 𝜆𝑖𝑍(𝑠𝑖)𝑛
𝑖=1                                                                                       (17) 

 

           Based on the equation (17) maka 𝑍̂(𝑠0) can be said to be a linear estimator because the linear 

function of 𝑍(𝑠𝑖). 

 

2) Unbiased 

Unfamiliarity with kriging by carrying out the expected value will get an error at a certain 

location which has an expected value equal to zero, the results obtained are as follows: 

 

E (𝑒̂(𝑠)) = E(𝑍(𝑠) − 𝑍̂(𝑠)) 

            = E(𝑍(𝑠) − ∑ 𝜆𝑖  𝑍(𝑠𝑖)
𝑛
𝑖=1  ) 

= E(𝑍(𝑠)) − ∑ 𝜆𝑖(𝑍(𝑠𝑖))𝑛
𝑖=1                                                         (18) 

Because of value E(𝑒̂(𝑠)) = 0 then you will get it: 

 

 

E(𝑒̂(𝑠)) = 𝐸(𝑍(𝑠)) − ∑ 𝜆𝑖𝐸(𝑍(𝑠𝑖))𝑛
𝑖=1  = 0 

E(𝑍(𝑠)) = ∑ 𝜆𝑖
𝑛
𝑖=1 𝐸(𝑍(𝑠𝑖)) 

𝜇 = ∑ 𝜆𝑖

𝑛

𝑖=1
𝜇 

              ∑ 𝜆𝑖 = 1𝑛
𝑖=1                                                                                                                  (19) 

So that the ordinary kriging method produces an estimator that is not biased   ∑ 𝜆𝑖 = 1.𝑛
𝑖=1  

 

 

3) Efficient (Minimizing the error range) 

The Ordinary kriging method has unbiased properties by minimizing the error range. Assuming that 

 

𝑣𝑎𝑟(𝑍(𝑠0)) =  𝜎2                        

 

G. The Jackknife method 

The Jackknife method was first introduced by Quenouille in 1949 which is a nonparametric and 

resampling method that aims to estimate standard errors and bias values. Jackknife is a method used to 

estimate an unknown population distribution with the empirical distribution obtained from the re-

sampling process. The principle of the Jackknife method is to remove one piece of data and repeat it as 

many times as there are samples. From the repetition process, bias and variance can be calculated [6].  

For example 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) dan 𝜃𝑖 = 𝑡(𝑥𝑖) is an estimator built from data X to estimate the 

parameter θ, then from the set 𝜃̂1, 𝜃̂2, … , 𝜃̂𝑛 is the jackknife standard error estimator [6]: 

𝑆𝑗𝑎𝑐𝑘 = [
𝑛−1

𝑛
∑ (𝜃̂(𝑖) − 𝜃̂(.))

2𝑛
𝑖=1 ]

1

2
                                                    (20) 

where:  
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𝜃̂(.)        =
1

𝑛
∑ 𝜃̂(𝑖)

𝑛

𝑖=1

 

𝜃̂(𝑖)   = test jackknife ke-i dari 𝜃̂ 

n = sample size    . 

 

 

H. Ordinary Kriging Algorithm with Jackknife 

The ordinary kriging estimator when all sample data is used is 

 

𝑍̂(𝑠) = ∑ 𝜆𝑖
𝑛
𝑖=1 𝑍(𝑠𝑖)   

where: 
∑ 𝜆𝑖

𝑛
𝑖=1 = 1 (unbiased condition for ordinary kriging, on equation 25) 

𝜆𝑖         = Ordinary kriging weights with samples 𝑖  
 

Ordinary kriging estimator when there is a sample 𝑗 unused, with 𝑗 = 1,2, … , 𝑛 is 

 

𝑍̂(𝑠) − 𝑗 = ∑ ∑ 𝜆𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

𝑍(𝑠𝑖)                                                                                                          (21) 

 

where:  
∑ ∑ 𝜆𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1    = 1 (unbiased conditions for jackknife kriging) 

𝜆𝑖𝑗      = ordinary kriging weight i when sample j is not used 

𝜆𝑖𝑗 value 0 when 𝑖 = 𝑗 

 

The unbiased condition of jackknife kriging can be explained as follows: 

 

E (𝑒̂(𝑠)) = E(𝑍(𝑠) − 𝑍̂(𝑠) − 𝑗) 

= E(𝑍(𝑠) − ∑ ∑ 𝜆𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 𝑍(𝑠𝑖) ) 

                        =E(𝑍(𝑠)) − ∑ ∑ 𝜆𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1  𝐸(𝑍(𝑠𝑖))                                         (22) 

 

 

Because of value E(𝑒̂(𝑠)) = 0 then you will get it: 

 

E(𝑒̂(𝑠)) = 𝐸(𝑍(𝑠)) − ∑ ∑ 𝜆𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1  𝐸(𝑍(𝑠𝑖)) = 0 

E(𝑍(𝑠)) = ∑ ∑ 𝜆𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1  𝐸(𝑍(𝑠𝑖)) 

𝜇 = ∑ ∑ 𝜆𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

𝜇 

                     ∑ ∑ 𝜆𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 = 1                                                                                          (23) 

 

So that the ordinary kriging jackknife method produces an estimator that is not biased   ∑ ∑ 𝜆𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 = 1 

 The difference between ordinary kriging and ordinary kriging with a jackknife estimator lies in 

the weights used. In ordinary kriging the weights obtained come from all data, while the weights in 

ordinary kriging with jackknife come from data issued one by one as much as n times (the amount of 

data) so that more than one weight is obtained. For more details, see Table I and Table II. 
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TABLE I 

ORDINARY KRIGING WEIGHTS 

𝒊 1 2 3 ⋯ n 

𝜆𝑖 𝜆1 𝜆2 𝜆3 ⋯ 𝜆𝑛 

 

From Table II it can be seen that the ordinary kriging weights are in the form of scalar data 

where 𝜆𝑖 show weight 𝑖 obtained from all data. 

TABLE II 

ORDINARY WEIGHT OF KRIGING WITH THE JACKKNIFE TECHNIQUE 

𝜆𝑖𝑗  𝑗 

𝑖  

  1 2 3 4 ... n 

1 0  𝜆12   𝜆13    𝜆14     𝜆1𝑛  

2  𝜆21  0         

3  𝜆31    0       

4  𝜆41      0     

 ⋮  ⋮        ⋱   

n  𝜆𝑛1          0 

 

From Table II it can be seen that the ordinary weights of kriging with the jackknife technique are 

in the form of vector data where 𝜆𝑖𝑗 show weight 𝑖 obtained when 𝑗 not used. For example 𝜆12 shows 

weight to 1 when data 2 is not used. Using the jackknife method will eliminate the sample 𝑧𝑗, then the 

jackknife estimator[19] is 

 

 𝑍(𝑠)𝑗 = 𝑛𝑍̂(𝑠) − (𝑛 − 1)𝑍̂(𝑠)(.)                                                  (24) 

where:  

 𝑍̂(𝑠)(.) = 𝑛−1 ∑ 𝑍̂(𝑠)−𝑗       

 

Tukey [20] states that to get a measure of the accuracy of the Jackknife estimator, the following 

pseudo-values are used 

 

𝑍𝑝−𝑗 = 𝑛𝑍̂(𝑠) − (𝑛 − 1)𝑍̂(𝑠)−𝑗                                                                (25) 

 

The jackknife estimator is a pseudo-value average, i.e.: 

 

𝑍(𝑠)𝑗 = 𝑛−1 ∑ 𝑍𝑝−𝑗𝑗                                      (26) 

 

From equations (26) and (25), the jackknife kriging estimator is obtained as follows [21]: 

 

 

𝑍(𝑠)𝑗 = 𝑛−1 ∑ 𝑍𝑝−𝑗

𝑗

 

= 𝑛−1 ∑{𝑛𝑍̂(𝑠) − (𝑛 − 1)𝑍̂(𝑠)−𝑗}

𝑗

 

=
𝑛2

𝑛
𝑍̂(𝑠) −

(𝑛 − 1)

𝑛
∑ 𝑍̂(𝑠)−𝑗

𝑗

 

= 𝑛 ∑ 𝜆𝑖

𝑛

𝑖=1

𝑧(𝑠𝑖) −
(𝑛 − 1)

𝑛
∑ ∑ 𝜆𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

𝑧(𝑠𝑖) 
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= ∑ {𝑛𝜆𝑖 −
(𝑛 − 1)

𝑛
∑ ∑ 𝜆𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

}

𝑛

𝑖=1

𝑧(𝑠𝑖) 

= ∑ 𝛼𝑖

𝑛

𝑖=1

𝑧(𝑠𝑖)                                                                                                                                 (27) 

 

where:  

𝛼𝑖 =  𝑛𝜆𝑖 −
(𝑛 − 1)

𝑛
∑ ∑ 𝜆𝑖𝑗 

𝑛

𝑗=1

𝑛

𝑖=1

 

𝛼𝑖 = jackknife kriging weights with samples 𝑖 
 

The total weight of the jackknife kriging is 

 

∑ 𝛼𝑖
𝑖

= 𝑛 ∑ 𝜆𝑖

𝑛

𝑖=1

−
(𝑛 − 1)

𝑛
∑ ∑ 𝜆𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

= 𝑛 − (
(𝑛 − 1)

𝑛
) 𝑛 

= 𝑛 − (𝑛 − 1) 

= 𝑛 − 𝑛 + 1 = 1 

 

I. Kriging Model Goodness Criteria  

The purpose of the Root Mean Square Error (RMSE) is to compare the accuracy between two or 

more models. The smaller the RMSE value produced by a model, the more accurate the model will be. 

RMSE is formulated as follows: 

RMSE = √
1

𝑛
∑ [𝑍(𝑠𝑖) − 𝑍̂(𝑠𝑖)]

2𝑛

𝑗=1
                                                                                 (28) 

where:  

𝑍(𝑠𝑖) and 𝑍̂ (𝑠𝑖) denote the actual and the predicted value of the variable 𝑠 at location -i, respectively  

𝑛 is number of observations. The kriging method is said to have good estimation accuracy if it has a small 

RMSE value [7]. 

 

 

III. RESEARCH METHOD 

This study uses secondary data on monthly rainfall in Malang Raya in 2016 in units of mm/month. 

Secondary data was obtained from UPT Water Resources Management Malang Raya, based on data from 

UPT Water Resources Management Malang Raya it is known that there are 44 rainfall posts which are 

spread out, namely 3 rainfall posts in Malang city, 7 rainfall posts in Batu city and 34 rainfall posts in 

Malang Regency  

 

A. Data Analysis  

The analysis carried out in this study is as follows: 
1. Prepare digitized maps in SHP format. 
2. Explain the stationarity of the data by looking at the descriptive results through plotting the data 

according to location coordinates (latitude and longitude). If the data does not have an up or down trend 
of spatial data with latitude or longitude, in other words random, then the ordinary kriging method can 
be used. However, if there is a pattern trend, the ordinary kriging method cannot be used. If there is a 
trend, it is necessary to carry out a transformation. 

3. Detect the normality of the data with the Kolmogorov Smirnov test. 
4. Analyzing data with the ordinary kriging spatial interpolation method 

a. Forming an experimental semivariogram/ semivariogram cloud 
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b. Form a theoretical semivariogram using three models, namely spherical, exponential, and gaussian 
c. Analyzing the accuracy of spherical, exponential, and gaussian variogam models using RMSE 

5. Make a map from the best interpolation results 

 

IV. RESULTS AND DISCUSSION 

The presentation of results should be simple and straightforward. This section reports the most 

important findings, including results of statistical analysis as appropriate and comparisons to other 

research results. Results given in figures should not be repeated in tables. This is where Authors should 

explain in words what he/she/they discovered in the research. It should be clearly laid out and in a logical 

sequence. This section should be supported suitable references [6]. 

 

A. Stationarity 

The ordinary kriging method requires observational data to be stationary, that is, observational 

data must have a constant average and variance at each location or observational data does not contain a 

trend. According to [9], a spatial data is said to be stationary if the data does not contain a trend. If there is 

a trend, the interpolation results of the ordinary kriging method will be inaccurate. Trend checks are 

carried out by forming plots of annual rainfall data in the Greater Malang Region in the direction of 

latitude or easting and longitude or northing. To form a plot, coordinates are needed for each rain post 

point in the Greater Malang Region. Plots for latitude (easting) coordinates are shown in Fig. 5, while 

plots for longitude (northing) coordinates are shown in Fig. 6. 

 

 
Fig. 5. Plot of Rainfall Value in Malang Raya Region Against Easting 

 

 

Fig. 6. Plot of Rainfall Value in Greater Malang Region Against Northing 
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Judging from Fig. 5 and Fig. 6 it is known that there is no trend of either increasing or 

decreasing rainfall values in the Greater Malang Region for easting and northing, so it can be concluded 

that there is no trend in the rainfall data in the Malang Raya Region in 2016. 

 

B. Normality Test 

Deviations from normality and stationarity can cause problems with poor accuracy, so the best 

first step is to look at histograms or data plots to check the normality and distribution of data to check 

trends [5]. The normality test was carried out by looking at the histogram and the Kolmogorov Smirnov 

test. Kolmogorov Smirnov test results from 44 rainfall posts from January to December 2016 in Malang 

Raya are shown in Table III. 
 

TABLE III 

KOLMOGOROV-SMIRNOV TEST 

Month Significance Value Information 

January 0.308 Normal 

February 0.952 Normal 

March 0.414 Normal 

April 0.634 Normal 

May 0.276 Normal 

June 0.611 Normal 

July 0.031 Abnormal 

August 0.726 Normal 

September 0.576 Normal 

October 0.388 Normal 

November 0.848 Normal 

December 0.439 Normal 

 

In the rainfall data from January to December 2016, it is known that all months are normally 

distributed except July. According to Bohling [5], the geostatistical method will obtain optimal values or 

have high accuracy values when applied to normally distributed and stationary data. Then it will be 

interpolated using ordinary kriging. 

 

C. Ordinary Kriging Interpolation 

Spatial interpolation is a method used to predict unknown values based on values obtained from an 

observation [18]. The first step in carrying out ordinary kriging interpolation is to construct an 

experimental semivariogram. The experimental semivariogram was calculated from the measured data 

and then plotted as a function of distance [16]. The results of empirical semivariogram calculations are 

displayed in graphical form which is often called a semivariogram cloud. The form of the semivariogram 

cloud of rainfall data for July 2016 is shown in Fig. 7. 

 

 
 

Fig. 7. Plot Result of the Semivariogram Cloud 

 

From the results of the semivariogram cloud in Fig. 7, it is difficult to see patterns in determining the 

appropriate semivariogram model because it has many observation points, so it is necessary to group it 

based on distance (binning) to make semivariogram modeling easier by entering data into a range of 
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intervals. The grouping process aims to facilitate interpretation [17]. Semivariogram binning results on 

rainfall data in Malang Malang Raya in July 2016 is shown in Fig. 8. 

 

 
Fig. 8. Rainfall Data Binning Semivariogram in Malang Raya in July 2016 (a) Spherical Semivariogram (b) Exponential 

Semivariogram (c) Gaussian Semivariogram 

 

Fig. 8. is a semivariogram that has been binned. The red dot is the binned point for each lag, while 
the blue dot shows the average binned for each lag. After binning, semivariogram modeling is carried out 
by means of structural analysis, namely by matching experimental semivariograms with theoretical 
semivariograms for use in estimation in order to obtain smooth and continuous covariance patterns so that 
they can be used to derive covariance matrices in kriging calculations [15]. The theoretical semivariogram 
model used is spherical, exponential and gaussian [5]. The following is a semivariogram model in July 
2016. 

 

1) Spherical Model 

𝛾(ℎ) = {13172.8 (1.5 (
ℎ

8373.171
) − 0.5 (

ℎ

8373.171
)

3

) , 𝑓𝑜𝑟 h ≤ 8373.171

13172.8                                                                       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

 

2) Exponential Model 

𝛾(ℎ) = {129506.1 (1 − exp (
−3ℎ

8373.171
))  ℎ ≠ 0 

0                                         ℎ = 0

 

 

3) Gaussian Model 

𝛾(ℎ) = {
15014.95 (1 − exp (

−3ℎ2

8373.171 2
))  ℎ ≠ 0

0                                           ℎ = 0

 

(a) 

(b) 

(c) 
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The semivariogram spherical model has a sill estimate of 13172.8 m which indicates that the 

semivariogram value has reached a stable value, namely the maximum height where the semivariogram 

value has no correlation between the data. The distance value when the semivarogram reaches the sill is 

8373.171 m. After obtaining the semivariogram model, then the process of selecting the best model for 

the three semivariogram models is carried out based on the best model selection criteria. 

 

D. Interpolation of Ordinary Kriging with the Jackknife Technique 

The first step in carrying out spatial interpolation with the Ordinary Kriging method with the 

Jackknife technique is to delete the 1st data with the jackknife technique and then interpolate with 

ordinary kriging to obtain jackknife kriging 1 (JK 1) in each semivariogram model. The average is 

calculated so that an interpolated value will be obtained for each rain post. The overall results of JK 

interpolation using the exponential model for each rain post in July 2016 are presented in Table IV. 

TABLE IV 

JACKKNIFE KRIGING EACH RAIN POST 

Rain Post Predictions Rain Post Predictions 

Bantur 105.574 Pujon 256.051 

Blambangan 79.143 Sekar 79.785 

Bululawang 76.069 Singosari 78.892 

Clumprit 122.246 Sitiarjo 381.950 

Dampit 72.977 Sumberpucung 105.631 

Dau 65.345 Tajinan 71.378 

Donomulyo 138.964 Tangkilsari 65.327 

Gondanglegi 106.656 Tumpang 58.908 

Jabung 35.188 Tumpukrenteng 98.062 

Jombok 135.419 Turen 104.326 

Kalipare 133.364 Wagir 63.876 

Kantor_Cd 48.265 Wajak 129.148 

KarangPloso 104.050 Ngaglik 64.497 

KarangSuko 104.175 Ngujung 68.337 

Kasembon 100.891 Pendem 72.466 

Kdgrejo 115.477 Sbr_Gondo 80.255 

Ngajum 47.000 Temas 68.270 

Ngantang 206.156 TinjuMoyo 78.093 

Pagak 140.165 Tlekung 51.577 

Penarukan 59.838 Blimbing 102.487 

Pohgajih 118.000 KedungKandang 66.325 

Poncokusumo 59.460 Sukun 75.939 

 
To determine the best semivariogram model, cross validation was carried out using the smallest 

RMSE value among the three models. The RMSE value is obtained from the difference between the 

observed rainfall data and the prediction results of each model. 

Based on Table V, the smallest RMSE values of the exponential semivariogram are found in 

April, May, June, July, August, September, November and December 2016. The smallest RMSE values 

of the Spherical semivariogram are in the rainfall data for February, March, May, June and October 2016. 

The smallest RMSE value is the Gaussian semivariogram in the rainfall data for January, May and June 

2016. To find out the variances of the three semivariogram models are the same or different, a statistical 

test is carried out. The test used is the Bartlet test. Bartlet test results from January to December 2016 are 

shown in Table VI. 
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TABLE V 

RMSE VALUE OF ORDINARY KRIGING WITH THE JACKKNIFE TECHNIQUE (JK) 

Month Semivariogram Model RMSE 

January  Spherical 59.634 

Exponential 2.972 

Gaussian 2.188 

February  Spherical 101.094 

Exponential 101.166 

Gaussian 116.344 

March  Spherical 83.631 

Exponential 83.881 

Gaussian 98.231 

April  Spherical 46.496 

Exponential 2.463 

Gaussian 78.411 

May  Spherical 1.718 

Exponential 1.718 

Gaussian 1.718 

June  Spherical 9.235 

Exponential 9.235 

Gaussian 9.235 

July  Spherical 70.578 

Exponential 56.825 

Gaussian 89.311 

August  Spherical 20.733 

Exponential 4.186 

Gaussian 30.756 

September  Spherical 18.256 

Exponential 1.052 

Gaussian 59.862 

October  Spherical 73.657 

Exponential 73.689 

Gaussian 84.708 

November  Spherical 117.033 

Exponential 115.922 

Gaussian 135.186 

December Spherical 68.948 

Exponential 62.856 

Gaussian 80.358 

Note: Numbers in bold print indicate the lowest RMSE 

 
Based on Table VI. with a significance level of 5% it is known that March, May, June, 

September, October and December have values p-value > 𝛼 so 𝐻0 received, so that the variances of the 

three semivariogram models are the same, which means that the spherichal, exponential and gaussian 

semivariograms can be used in March, May, June, September, October and December. However, the 

researchers chose the semivariogram with the smallest RMSE, namely the exponential semivariogram in 

March, May, June, September, December and the spherical semivariogram in October. In January, 

February, April, July, August and November p-value < 𝛼 so 𝐻0 received, so that the spherichal, 

exponential and gaussian semivariogram variances are different. Based on these results, the RMSE can 

determine the best semivariogram based on the smallest value. 
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TABLE VI 

P-VALUE RESULTS OF THE JACKKNIFE KRIGING BARTLET TEST MODEL SEMIVARIOGRAM 

Month P-Value 

January 1 x 10−11 

February 1 x 10−13 

March 0.918 

April 0.010 

May 0.997 

June 0.998 

July 0.020 

August 0.007 

September 0.290 

October 0.290 

November 0.012 

December 0.534 

 

Fig. 9. show the interpolation results are grouped into 10 classes and each class has a different 

color. The higher the rainfall interpolation results, the map will be orange. Vice versa, the lower the 

rainfall interpolation results, the map will be blue. According to BMKG (2013) low rainfall ranges from 

0-100 mm, medium rainfall ranges from 101-300 mm, high rainfall ranges from 301-500 mm and very 

high rainfall is more than 501 mm. Based on the results of ordinary kriging interpolation using an 

exponential semivariogram, the area around the south of Malang Raya has moderate rainfall. 

 

 
Fig. 9. Interpolation Map of Ordinary Kriging Using Jackknife Technique on Rainfall Data in Malang Raya in July 2016 
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V. CONCLUSION 

Based on the results of the study, it was found that the classification of the 2016 Malang Raya 

rainfall data was divided into 2 data, namely normally distributed data and abnormally distributed data. 

Normal distribution data is in January, February, March, April, May, June, August, September, October, 

November, December. While the data is not normally distributed in July. jackknife kriging has the best 

exponential semivariogram in April, May, June, July, August, September, November, and December. 

Best spherical semivariogram in February, March, May, June, and October. Best gaussian semivariogram 

in January, May, and June. For non-normally distributed data, a relatively small RMSE value is obtained, 

this indicates that jackknife kriging is good for interpolating non-normally distributed data. For further 

studies, researchers may be able to use more types of interpolation methods so they can compare the best 

methods for interpolating normally distributed and abnormally distributed data.  
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