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Abstract 

Twitter serves as a crucial platform for expressing public sentiment during natural disasters, yet 

understanding and addressing these sentiments remains challenging due to data volume, imbalance, 

and regional disparities in response. This study aims to bridge this gap by conducting geospatial 

sentiment analysis on 988 labeled tweets related to the eruption of Mount Marapi, categorized into 

four aspects which are Basic Needs, Impact and Damage, Response and Action, and Weather and 

Nature. The preprocessing stage includes data cleaning, case folding, tokenization, normalization, 

stopword removal, and stemming. Feature extraction uses TF-IDF, while class imbalance is 

addressed with SMOTE. Each aspect is modeled separately using Support Vector Machine (SVM) 

with linear, polynomial, and RBF kernels, evaluated through 10-fold cross-validation. Results show 

that the linear kernel performed best across most aspects, achieving 92.42% accuracy for Impact 

and Damage, 80.38% for Response and Action, and 94.22% for Weather and Nature. Meanwhile, 

the RBF kernel showed competitive performance with 89.54% accuracy for Basic Needs. Geospatial 

visualization highlights regional sentiment distribution patterns, offering insights into public 

responses across Indonesian regions. This study contributes to improving disaster response 

strategies by providing insights into public sentiment, enabling authorities to better allocate 

resources and address community concerns effectively. 
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I. INTRODUCTION 

atural disasters such as volcanic eruptions, earthquakes, and floods are recurring challenges in Indonesia, 

a country situated on the Pacific Ring of Fire [1]. These disasters cause not only physical damage but also 

significant emotional and psychological distress to affected communities. During such crises, social media 

platforms, particularly Twitter, serve as critical tools for individuals to express opinions, share experiences, and 

disseminate information in real time [2]. Public responses on Twitter range from expressions of distress and 

dissatisfaction to gratitude and resilience. However, the sheer volume and unstructured nature of this data pose 

significant challenges for effective analysis. Extracting meaningful insights from this data is essential to 

understanding public sentiment and informing disaster response strategies [3]. Despite the potential of this data, 
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sentiment patterns across different regions remain underexplored, especially in terms of how sentiments vary 

between directly affected regions and those observing from afar. 

Sentiment analysis is a field of study which strives to classify human opinions and sentiments into positive 

and negative classes [4][5]. Textual data is a rich source of information. This is why textual data analysis has 

gained more and more importance in recent years, given the powerful mainstream algorithms expected to extract 

meaningful insights from the data. Various approaches hold promising utility in sentiment analysis, with 

machine learning methods, particularly Support Vector Machine (SVM), emerging as a popular choice owing 

to the significant advantage of their ability to classify correctly in high-dimensional data [6][7][8]. In addition, 

SVM is effective for both linear and non-linear classification tasks and excels at handling small to moderately 

sized datasets efficiently [9]. 

Previous studies have shown that SVM outperforms other machine learning algorithms in text classification 

tasks, particularly when paired with feature extraction techniques like TF-IDF [10]. Additionally, SVM allows 

the flexibility of using different kernel functions, including linear, polynomial, and Radial Basis Function 

(RBF), to capture diverse data relationships. However, selecting the most suitable kernel remains a critical 

challenge in achieving optimal performance. While existing studies often focus solely on sentiment 

classification performance, the integration of geospatial analysis with sentiment analysis remains limited, 

particularly in disaster-related contexts. Geospatial analysis provides a powerful way to visualize and interpret 

sentiment distribution across specific locations [11]. By combining sentiment analysis with geospatial mapping, 

it becomes possible to identify how sentiments vary regionally, particularly between directly affected regions 

and those observing from a distance [12]. This spatial understanding is crucial for government agencies, disaster 

management authorities, and humanitarian organizations in prioritizing resource allocation, directing aid 

efforts, and addressing public concerns more effectively. By mapping sentiment distributions, geospatial 

analysis helps uncover localized reactions, such as differing levels of concern, support, or opposition across 

regions [13][14]. Despite its potential, there is a noticeable gap in research that combines SVM-based sentiment 

analysis with geospatial visualization to comprehensively analyze disaster-related sentiments. 

This study aims to address these gaps by analyzing Twitter data related to the eruption of Mount Marapi 

through sentiment classification and geospatial visualization. The objectives of this research are threefold. First, 

to evaluate the performance of SVM kernels (linear, polynomial, and RBF) across different sentiment aspects. 

Second, to identify the most effective kernel configuration for each aspect using evaluation metrics such as 

accuracy, precision, recall, and F1-score. And lastly, to map sentiment distributions geospatially, offering 

insights into how sentiments vary across affected and unaffected regions. Data preprocessing includes data 

cleaning, case folding, tokenization, normalization, stopword removal, and stemming to make a high-quality 

input to the model [15]. Also, TF-IDF is used for feature extraction and class balance is handled with the help 

of SMOTE to improve model reliability [16]. All SVM models are evaluated using 10-fold cross-validation and 

compared based on metrics such as accuracy, precision, recall, and F1 score. SVM is particularly suitable for 

this type of analysis due to its effectiveness in distinguishing between sentiment classes, even in high-

dimensional spaces, ensuring robustness and reliability in the results. 

The main contribution of this research lies in integrating sentiment analysis using SVM with geospatial 

analysis to provide a comprehensive understanding of public sentiment during natural disasters. By identifying 

regional sentiment patterns, this study offers actionable insights for policymakers, disaster response agencies, 

and local governments to improve their communication strategies, optimize resource distribution, and enhance 

public trust. Furthermore, this study serves as a foundation for future research exploring the integration of 

advanced machine learning models with geospatial techniques for sentiment analysis in disaster contexts. This 

paper is organized into several sections, with Section 2 discussing related works, Section 3 describing the 

proposed methods, Section 4 presenting results and analysis, and Section 5 concluding the findings. 

II. LITERATURE REVIEW 

Sentiment analysis is widely used to classify opinions expressed in textual data into categories such as 

positive, negative, or neutral sentiments. Twitter’s data has been extensively analyzed due to its accessibility 
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and real-time nature. A study by Ainun Zumarniansyah et al compared the performance of Support Vector 

Machine (SVM) and Naïve Bayes methods for sentiment classification [17]. The results demonstrated that SVM 

achieved higher accuracy in handling high-dimensional textual data, making it a suitable method for complex 

datasets like tweets. Similarly, research by Kharisma Wiati Gusti explored the use of SVM and Logistic 

Regression for classifying disaster-related tweets [18]. The study concluded that SVM consistently 

outperformed Logistic Regression in accuracy, with SVM achieving 80.41% accuracy compared to Logistic 

Regression’s 70.74% with SMOTE, showcasing SVM’s robustness in handling complex and imbalanced 

datasets [18]. Another notable study by Mera Kartika Delimayanti applied a multiclass SVM approach to 

classify flood-related tweets into eyewitness, non-eyewitness, and unknown categories [19]. The research 

employed various preprocessing steps, feature extraction techniques like TF-IDF, and word weighting methods. 

The findings revealed that the RBF kernel produced the best classification performance with an accuracy of 

87.03%, highlighting the potential of SVM in disaster-related sentiment analysis. However, these studies 

focused on textual sentiment classification without incorporating geospatial dimensions. 

Geospatial analysis involves examining the spatial distribution of data to uncover patterns and trends 

associated with specific locations. A study by Tao Hu et al utilized the Local Indicators of Spatial Association 

(LISA) method to identify spatial clusters of sentiments [20]. It demonstrated the value of combining geospatial 

and temporal dimensions to provide insights into the relationship between user sentiment and geographical 

regions.In another study, Olga Buchel and Diane Rasmussen Pennington emphasized the importance of spatial 

and temporal contexts in understanding communication patterns and human behavior [11]. Despite their 

contributions, these studies focused primarily on general geospatial trends and lacked a detailed exploration of 

sentiment analysis combined with geospatial insights specific to disaster contexts. Furthermore, research by 

Tao Hu et al applied spatial clustering techniques to analyze sentiment variations in urban settings, uncovering 

associations between sentiments and specific points of interest [20]. These approaches demonstrated the 

potential of combining sentiment and geospatial analysis to provide actionable insights but often overlooked 

the optimization of sentiment classification models. 

TABLE I 

SUMMARY OF RELATED WORKS IN SENTIMENT AND GEOSPATIAL ANALYSIS 

Author(s) Methodology Key Findings Limitations Research Gap 

Ainun 
Zumarniansyah et al 

SVM vs Naïve 
Bayes 

SVM achieved 
higher accuracy in 
text classification 

No integration of 
geospatial analysis 

Lack of spatial 
sentiment insights 

Kharisma Wiati 
Gusti 

SVM vs Logistic 
Regression with 

SMOTE 

SVM outperformed 
Logistic Regression 

with 80.41% 
accuracy 

No geospatial 
sentiment mapping 

Missing spatial 
sentiment 

visualization 

Mera Kartika 
Delimayanti et al 

Multiclass SVM 
with TF-IDF and 

RBF Kernel 

RBF kernel showed 
87.03% accuracy in 
disaster sentiment 

classification 

No geospatial 
integration 

Absence of spatial 
analysis insights 

Tao Hu et al LISA Method 
(Spatial Clustering) 

Identified spatial 
clusters of 
sentiments 

No integration with 
SVM classification 

models 

Limited sentiment 
model optimization 

Olga Buchel et al Spatial and 
Temporal Analysis 

Contextual insights 
on communication 

patterns 

No focus on 
disaster-related 

sentiment analysis 

Limited focus on 
regional variations 

 

The findings from the key studies discussed above are summarized in Table I, highlighting the methods, 

primary results, and identified gaps. While previous studies have significantly advanced sentiment analysis and 
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geospatial analysis, several gaps remain. First, there is limited research systematically evaluating the 

performance of different SVM kernels for sentiment classification in disaster-related datasets. Second, most 

studies have not fully integrated geospatial analysis to enhance sentiment analysis results, particularly in the 

context of Indonesian natural disasters. Third, challenges such as data noise, imbalanced datasets, and the 

absence of robust preprocessing pipelines often hinder the reliability of results. This study aims to address these 

gaps by combining sentiment analysis and geospatial analysis to provide a comprehensive understanding of 

public sentiment during natural disasters in Indonesia. By systematically evaluating various SVM kernels, 

including linear, polynomial, and RBF, and incorporating geospatial visualization techniques using Nominatim 

and Folium libraries, this research contributes to the growing body of literature on sentiment analysis and 

geospatial insights. 

Furthermore, this study differentiates itself from previous research through a structured comparison of SVM 

kernel configurations to identify the most effective model for sentiment classification across multiple aspects. 

Unlike earlier works that focused primarily on textual analysis, this research integrates geospatial mapping tools 

to visualize sentiment distribution across different regions. This integration allows for a more thorough 

understanding of sentiment patterns and their spatial context, offering actionable insights that can aid in disaster 

response planning and policy-making. Through this combined sentiment-geospatial analysis framework, the 

study bridges the gap between sentiment classification and spatial analysis, delivering a nuanced perspective 

on public sentiment during natural disasters. 

 

III. RESEARCH METHOD 

A. System Design 

The system implemented in this research is designed to perform sentiment analysis with geospatial insights 

using Support Vector Machine (SVM). Fig. 1 illustrates the system overview, which consists of several 

interconnected stages. The process begins with data crawling, where tweets related to natural disasters, such as 

the eruption of Mount Marapi, are collected from Twitter. These tweets form the primary dataset for analysis. 

Following this, a manual labeling stage categorizes the data into positive and negative sentiments to ensure the 

dataset’s reliability and suitability for sentiment analysis. 

 

Fig. 1. System Overview 

Preprocessing is then performed to clean and prepare the data. This stage includes essential tasks such as data 

cleaning, case folding, tokenization, normalization, stopword removal, and stemming. These steps enhance the 
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quality of the textual data, making it ready for feature extraction. Additionally, determining aspects based on 

predefined keywords is carried out both before TF-IDF feature extraction and after preprocessing, ensuring 

accurate categorization of tweets into specific aspects (Basic Needs, Impact and Damage, Response and Action, 

Weather and Nature). The numerical representation of the text is achieved through Term Frequency-Inverse 

Document Frequency (TF-IDF), which measures the significance of words in the dataset. Additionally, the 

Synthetic Minority Over-sampling Technique (SMOTE) is applied to address imbalanced data by generating 

synthetic samples for minority classes, improving the model's robustness in handling skewed datasets. 

After preprocessing and feature extraction, the dataset is split into train and test sets using Stratified K-Fold 

cross-validation with 10 folds to ensure balanced representation of sentiment classes across multiple iterations. 

The SVM model is then trained on the processed data, leveraging three kernel configurations, which are linear, 

polynomial, and RBF, each offering unique capabilities in handling linear and non-linear data patterns. 

Hyperparameters such as C equal to one and gamma set to scale ensure optimal performance across varying 

data structures. The pipeline architecture integrates preprocessing, SMOTE balancing, and SVM modeling, 

streamlining the entire sentiment classification workflow. Compared to previous studies, this method provides 

a more comprehensive perspective by combining advanced text classification with geospatial analysis, enabling 

stakeholders, including governments and disaster response teams, to identify priority regions requiring 

immediate attention. 

B. Data Crawling 

Finding data from a specific source is referred to as "crawling." In this study, 988 tweets were collected from 

the Twitter social media platform using the Twitter API and Python programming language. The keywords used 

for the crawling process were ‘marapi meletus’, ‘meletus marapi’, ‘erupsi marapi’, and ‘marapi erupsi’, 

focusing on tweets related to the eruption of Mount Marapi. The retrieved data includes important features such 

as tweet text and location information, which are essential for sentiment and geospatial analysis. The data was 

automatically stored in a CSV file format for further analysis. This dataset serves as the foundation for sentiment 

and geospatial analysis in this study. 

TABLE II 

COUNT OF SENTIMENT LABELS 

Label Amount Ratio (%) 

Positive 220 22.26 
Negative 768 77.74 

Total Data 22 22 

TABLE III 

EXAMPLE OF LABELING 

Data Label 

“Sebanyak 38 mahasiswa Politeknik Negeri 
Padang (PNP) mendapatkan penghargaan 
khusus. Penghargaan itu diberikan berkat jasa 
mereka yang ikut terjun di dalam proses 
evakuasi korban erupsi Marapi 3 Desember 
2023 silam” 

Positive 

“Salah satu korban erupsi Gunung Marapi 
Zhafirah Zahrim Febrina atau yang dikenal Ife 

kini dinyatakan meninggal dunia setelah 
berjuang selama 13 hari dirawat di Rumah Sakit 
Simak Selengkapnya Disini” 

Negative 
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C. Labeling Data 

After completing the data collection process and obtaining the dataset, the next step in this research is data 

labeling, which was carried out manually to ensure accuracy and relevance. Each tweet was assigned a sentiment 

label, categorized into positive or negative sentiments, based on its content related to the eruption of Mount 

Marapi. To enhance validity, the dataset was thoroughly reviewed multiple times, with ambiguous tweets being 

carefully discussed to ensure consistency and correctness. The overall data and sample data are presented in 

Table II and Table III. 

D. Preprocessing Data 

Preprocessing is one of the most critical steps in preparing data for analysis or modeling, ensuring that raw 

data is cleaned, simplified, and optimized for better performance in sentiment analysis [21]. In this research, 

preprocessing plays a significant role in improving the quality and accuracy of the sentiment and geospatial 

analysis conducted on tweets related to the eruption of Mount Marapi. The preprocessing stages include Data 

Cleansing, Case Folding, Tokenizing, Normalization, Stopword Removal, and Stemming to reduce words to 

their base forms. These steps collectively refine the dataset, addressing the challenges posed by social media 

data and ensuring its readiness for feature extraction and model training.  

1) Data Cleansing: This step removes unnecessary elements such as URLs, numbers, punctuation, symbols, 

hashtags, and emoticons from the dataset. Simplifying the text in this way helps eliminate noise and retain only 

relevant content for analysis.  

2) Case Folding: Text is converted to lowercase to ensure consistency. By treating words with different cases 

as the same word, case folding reduces complexity and enhances the uniformity of the dataset.  

3) Tokenizing: This step breaks down the text into smaller units or tokens, typically individual words. 

Tokenization simplifies the text, making subsequent processing steps more efficient. 

4) Normalization: Normalization in this study was performed manually by standardizing slang words and 

informal language into their formal equivalents. Each word or phrase was carefully reviewed and mapped to its 

proper form. For example, gk was replaced with nggak, sy with saya, and trs with terus. This manual 

normalization process ensures that context-specific slang words commonly found in social media data are 

accurately interpreted and standardized.  

5) Stopword Removal: Stopwords, such as dan, di, ke, which do not contribute significant meaning to the 

sentiment analysis, are removed from the text. In this study, NLTK's stopwords library was used to filter out 

unnecessary words from the dataset, ensuring that only meaningful tokens remain for further analysis. 

6) Stemming: This step reduces words to their root forms to eliminate morphological variations. For example, 

words like berlari and lari are reduced to a single root word, which is lari. In this research, Sastrawi, a widely-

used stemming library for the Indonesian language, was employed to perform this step efficiently.  perform this 

step efficiently.  

E. Determining Aspects 

After the preprocessing stage, the next step in this research is determining the aspects of the tweets to 

categorize them into meaningful groups. The categorization is based on predefined keywords associated with 

four primary aspects which are Basic Needs, Response and Action, Impact and Damage, and Weather and 

Nature. Each aspect is defined by a set of relevant keywords extracted from the textual data. For example, the 

Basic Needs aspect includes keywords like makan, air, and obat, while the Response and Action aspect contains 

keywords such as bantuan, evakuasi, and penyelamatan. Similarly, the Impact and Damage aspect focuses on 

terms like kerugian, korban, and luka, and the Weather and Nature aspect captures words such as hujan, erupsi, 

and longsor. During this step, each tweet is analyzed for the presence of these keywords to assign it to the most 
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appropriate aspect category. This classification ensures that sentiment analysis and subsequent evaluations are 

conducted with a clear focus on specific thematic dimensions, thereby enhancing the granularity and relevance 

of the results. 

F. Feature Extraction TF-IDF 

TF-IDF (Term Frequency-Inverse Document Frequency) is an algorithm used to calculate the weight of each 

term within a document, assessing the significance of the term relative to the entire corpus. This method 

combines two metrics: Term Frequency (TF) and Inverse Document Frequency (IDF). Term Frequency (TF) 

measures how often a term appears in a specific document and is calculated using the formula 1.  

𝑇𝐹 =
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡
 (1) 

This calculation highlights the importance of a term within a single document, assigning a higher weight to 

frequently occurring words. Inverse Document Frequency (IDF), on the other hand, evaluates the rarity of a 

term across the entire corpus of documents. It is defined as formula 2. 

𝐼𝐷𝐹 = 𝑙𝑜𝑔
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑤𝑜𝑟𝑑𝑠
 (2) 

This component reduces the weight of commonly occurring terms, ensuring that terms frequently present in 

many documents (e.g., stopwords) do not dominate the analysis. The TF-IDF score for a term is calculated by 

multiplying the TF and IDF values as in formula 3. 

𝑇𝐹 − 𝐼𝐷𝐹 =  𝑇𝐹 × 𝐼𝐷𝐹 (3) 

G. Stratified K-Fold Cross Validation 

Stratified K-Fold Cross Validation is a statistical technique used to evaluate the performance of machine 

learning models by splitting the dataset into subsets, or folds, while preserving the proportion of each class in 

the data [22]. This method ensures that each fold maintains the same distribution of class labels as the original 

dataset, making it particularly effective for imbalanced datasets. The process begins by dividing the data into 

folds. For each iteration, one fold is used as the test set, while the remaining folds serve as the training set. This 

process is repeated times, with each fold being used as the test set exactly once. The final performance metrics, 

such as accuracy, precision, recall, and F1-score, are computed as the average of the results from all iterations.  

 

 

Fig. 2. Schematic Diagram of Stratified K-fold Cross Validation 
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Stratified K-Fold Cross Validation offers several advantages over traditional K-Fold Cross Validation. By 

preserving the class distribution in each fold, it ensures that the model is tested on data that represents the true 

class proportions, which is critical for tasks involving imbalanced datasets. This method also reduces the risk 

of bias in performance evaluation, providing a more reliable estimate of the model’s generalization ability. The 

schematic diagram of Stratified K-fold Cross Validation is shown in Fig. 2. 

H. Handle Imbalance (SMOTE)  

Synthetic Minority Over-sampling Technique (SMOTE) is a method used to address class imbalance by 

creating new synthetic samples for the minority class, thereby balancing the dataset [23]. This technique 

generates synthetic data points by interpolating between existing samples of the minority class. The newly 

synthesized examples are then added to the training data, ensuring that the classifier is trained on a balanced 

dataset. Class imbalance can significantly affect the performance of machine learning models, as models tend 

to favor the majority class when the dataset is skewed [24]. By incorporating SMOTE, the training dataset 

becomes more representative, enabling the classifier to learn from a more equitable distribution of classes. This 

approach improves the model's ability to generalize and correctly classify instances of the minority class. An 

illustration of how SMOTE works can be seen in Fig. 3.  

 

 

Fig. 3. SMOTE Illustration 

I. Model Learning SVM 

Support Vector Machine (SVM) is an algorithm used for data classification, capable of handling both linear 

and non-linear patterns. The strength of SVM in managing non-linear patterns lies in its ability to utilize kernel 

functions to project data into a higher-dimensional space, enabling better separation of classes [25]. SVM 

effectively groups different types of objects into distinct categories. As a supervised learning model, SVM uses 

pre-labeled training data to predict the classes of new, unseen samples. SVM is fundamentally a binary 

classification algorithm, meaning it is designed to differentiate between two classes. However, for tasks 

requiring the classification of more than two classes, SVM can be extended into a multi-class classifier using 

strategies such as One-vs-Rest or One-vs-One. These strategies allow SVM to handle multi-class problems 

effectively by decomposing them into multiple binary classification tasks.  

SVM kernels play a pivotal role in defining the decision boundary between classes. Each kernel function 

provides a unique way to calculate the similarity between data points: 

1) Linear Kernel: The linear kernel calculates the dot product of two vectors to create a hyperplane for linearly 

separable data. The formula is expressed as formula 4. where x and y represent input vectors.  

𝐾(𝑥, 𝑦) = (𝑥. 𝑦) (4) 

2) Polynomial Kernel: The polynomial kernel extends the concept of the linear kernel by raising the dot 

product to a polynomial degree d, enabling the separation of more complex relationships. The formula is 

expressed as formula 5. where c is a constant and d denotes the degree of the polynomial. 

𝐾(𝑥, 𝑦) = (𝑥. 𝑦 + 𝑐)𝑑 (5) 
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3) Radial Basis Function (RBF) Kernel: The RBF kernel, also known as the Gaussian kernel, calculates the 

similarity between two points using a Gaussian function. This kernel is suitable for high-dimensional and 

irregular data. The formula is expressed as formula 6. where γ controls the influence of individual data points.  

𝐾(𝑥, 𝑦) = exp (−γ(x − y)2) (6) 

In this study, SVM was applied across four predefined aspects which are Basic Needs, Impact and Damage, 

Response and Action, and Weather and Nature. For each aspect, the dataset was processed using TF-IDF for 

feature extraction, and SMOTE was employed to address class imbalance by generating synthetic samples for 

minority classes. The model was validated using Stratified K-Fold Cross-Validation with 10 folds, ensuring 

balanced representation of sentiment classes across training and testing datasets. Each kernel (linear, 

polynomial, and RBF) was tested independently on every aspect to evaluate their effectiveness. The C parameter 

was set to one to control the trade-off between achieving a low error margin and minimizing misclassification, 

while the gamma parameter was set to scale, allowing the model to automatically adjust gamma based on the 

number of features. Additionally, a pipeline approach was implemented to streamline the modeling process by 

combining preprocessing, SMOTE balancing, and SVM training in a single workflow. The illustration of the 

SVM method is shown in Fig. 4. 

In this study, SVM was applied across four predefined aspects which are Basic Needs, Impact and Damage, 

Response and Action, and Weather and Nature. For each aspect, the dataset was processed using TF-IDF for 

feature extraction, and SMOTE was employed to address class imbalance by generating synthetic samples for 

minority classes. 

 

 

Fig. 4. Illustration of the SVM Method 

J. Performance Evaluation 

Performance evaluation is a critical step in determining the effectiveness of the developed classification 

model. In this study, evaluation metrics such as accuracy, precision, recall, and F1-score were used to assess 

the model’s performance. These metrics were calculated using a confusion matrix, which provides a detailed 

comparison between the actual and predicted values of the dataset.  

TABLE IV 

CONFUSION MATRIX 

Confusion Matrix Positive Negative 

Positive True Positive False Negative 

Negative False Positive False Negative 

The confusion matrix encompasses four key terms that aid in understanding model predictions [26]. True 

Positive (TP), which refers to correctly predicted positive instances. True Negative (TN), indicating correctly 
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predicted negative instances. False Positive (FP), representing incorrect predictions where the true label is 

negative but predicted as positive. False Negative (FN), which describes incorrect predictions where the true 

label is positive but predicted as negative. The following formulas were used to calculate the performance 

metrics:  

1) Accuracy: The ratio of correctly predicted instances (both positive and negative) to the total number of 

instances. The following formula can be used to calculate accuracy:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (7) 

2) Precision: The ratio of correctly predicted positive instances to all instances predicted as positive. The 

following formula can be used to calculate precision: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (8) 

3) Recall: The ratio of correctly predicted positive instances to all actual positive instances. The following 

formula can be used to calculate recall:  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (9) 

4) F1-Score: A harmonic mean of precision and recall, providing a balanced measure of both metrics. The 

following formula can be used to calculate F1-Score:  

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (10) 

These metrics ensure a comprehensive evaluation of the model, particularly in datasets with imbalanced 

classes. By analyzing the confusion matrix and these performance indicators, the robustness and reliability of 

the classification model can be effectively measured.  

K. Geospatial Analysis 

Geospatial analysis involves the visualization and interpretation of data based on geographic or spatial 

locations [27]. In this study, geospatial analysis is applied to understand the distribution of sentiments related 

to the eruption of Mount Marapi across different regions in Indonesia. By combining sentiment analysis with 

geographic information, this method enables the identification of patterns, trends, and regional disparities in 

public sentiment. The analysis focuses on four predefined aspects which are basic needs, response and action, 

impact and damage, and weather and nature, offering a multi-dimensional view of how sentiment varies 

geographically. 

The geospatial analysis process begins with extracting location data during the initial data crawling stage, 

where tweet metadata such as user-provided locations are collected. These raw location data are then processed 

using the Nominatim library to convert textual location names into geographical coordinates (latitude and 

longitude) via OpenStreetMap's geocoding service. Invalid or unrecognized locations are handled 

systematically by assigning default coordinate values to maintain data consistency. Once the coordinates are 

obtained, data aggregation is performed to calculate sentiment dominance at each location for every aspect. 

Using Folium, an interactive geospatial map is generated for each aspect. Each map includes markers that 

represent locations with dominant sentiment classifications (positive or negative) color-coded for clarity. 

Specifically, blue markers represent positive sentiment, while red markers represent negative sentiment. The 
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size and opacity of the markers are adjusted to improve readability and emphasize regions with significant 

sentiment trends. 

 

IV. RESULTS AND DISCUSSION 

In this research, various steps and methods were systematically applied to evaluate the performance of the 

sentiment analysis model using Support Vector Machine (SVM) across four predefined aspects which are Basic 

Needs, Impact and Damage, Response and Action, and Weather and Nature. Each aspect was analyzed 

independently using SVM with three kernel configurations—linear, polynomial, and RBF—to identify the 

optimal kernel for sentiment classification in each specific context. The evaluation process involved several 

critical stages, including preprocessing with techniques such as data cleaning, case folding, tokenization, 

normalization, stopword removal, and stemming. Feature extraction was performed using Term Frequency-

Inverse Document Frequency (TF-IDF), while class imbalance was addressed using Synthetic Minority Over-

sampling Technique (SMOTE). Model validation was carried out using Stratified K-Fold Cross Validation with 

10 folds to ensure robust and reliable evaluation results. Additionally, geospatial analysis was conducted after 

performance evaluation to visualize the sentiment distribution across Indonesian regions for each aspect, 

offering insights into regional sentiment patterns and public responses.  

A. Evaluation Results 

This section presents the evaluation results of the SVM model for each aspect which are Basic Needs, Impact 

and Damage, Response and Action, and Weather and Nature. Each aspect was processed separately using the 

same methodology, including data preprocessing, feature extraction with TF-IDF, and class balancing with 

SMOTE. The evaluation was performed using three SVM kernels—linear, polynomial, and RBF—with 

Stratified K-Fold Cross Validation set to 10 folds to ensure a robust and reliable performance evaluation. The 

model was trained with C equal to one and gamma set to scale hyperparameters. The performance of each kernel 

was assessed using four key metrics which are accuracy, precision, recall, and F1-score. In the Basic Needs 

aspect, the dataset was preprocessed using cleaning, tokenization, normalization, stopword removal, and 

stemming. TF-IDF was applied to extract relevant features, and SMOTE was used to address class imbalance. 

Stratified K-Fold Cross Validation with 10 folds ensured an even distribution of data across training and testing 

sets. The SVM model was tested with three kernels which are linear, polynomial, and RBF. The linear kernel 

performed the best, achieving the highest scores across all metrics. The evaluation results for the Basic Needs 

aspect are presented in Table V. 

TABLE V 

METRIC EVALUATION FOR BASIC NEEDS ASPECT 

Metric Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Linear 89.11 90.77 89.11 87.97 

Polynomial 79.22 73.72 79.22 73.88 
RBF 81.44 78.32 81.44 77.37 

TABLE VI 

METRIC EVALUATION FOR IMPACT AND DAMAGE ASPECT 

Metric Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Linear 92.42 92.38 92.42 92.09 
Polynomial 87.97 88.94 87.97 85.80 

RBF 89.54 89.98 89.54 88.12 

 

For the Impact and Damage aspect, similar preprocessing and feature extraction steps were performed, 

followed by class balancing using SMOTE. Data was split into training and testing sets using 10-fold Stratified 

K-Fold Cross Validation. The evaluation results revealed that the linear kernel achieved the best performance 
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across all metrics, followed closely by the RBF kernel, while the polynomial kernel performed the lowest. The 

evaluation results for the Impact and Damage aspect are presented in Table VI. 

In the Response and Action aspect, the dataset was preprocessed, balanced with SMOTE, and split into 10 

folds using Stratified K-Fold Cross Validation. The linear kernel demonstrated the best performance, while the 

polynomial and RBF kernels performed relatively lower, with the RBF kernel showing the weakest performance 

across all metrics. The evaluation results for the Response and Action aspect are shown in Table VII. 

TABLE VII 

METRIC EVALUATION FOR RESPONSE AND ACTION ASPECT 

Metric Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Linear 80.38 79.31 80.38 78.15 
Polynomial 75.11 70.31 75.11 67.92 

RBF 71.43 59.11 71.43 61.62 

 

For the Weather and Nature aspect, data preprocessing and balancing steps were performed similarly, 

followed by 10-fold Stratified K-Fold Cross Validation for robust evaluation. The linear kernel achieved the 

best performance, with the polynomial and RBF kernels following closely behind. However, all three kernels 

demonstrated strong performance across the metrics. The evaluation results for the Weather and Nature aspect 

are presented in Table VIII.  

TABLE VIII 

METRIC EVALUATION FOR WEATHER AND NATURE ASPECT 

Metric Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Linear 94.22 92.40 94.22 92.63 
Polynomial 93.70 89.61 93.70 91.26 

RBF 93.18 87.59 93.18 90.24 

 

B. Geospasial Results 

The geospatial analysis conducted in this study aims to visualize the distribution of sentiments across various 

regions based on four predefined aspects which are Basic Needs, Impact and Damage, Response and Action, 

and Weather and Nature. These aspects were determined based on predefined keywords that categorize the 

tweets into specific themes. For example, keywords such as makanan, air, and obat were used for the Basic 

Needs aspect, while words like kerugian and korban were used for the Impact and Damage aspect. Similarly, 

words like bantuan and evakuasi defined the Response and Action aspect, and terms like hujan, erupsi, and 

longsor were associated with the Weather and Nature aspect. Sentiment classification is divided into positive 

and negative categories. The data consists of 26 positive and 355 negative sentiments for the Weather and 

Nature aspect, 73 positive and 309 negative sentiments for the Impact and Damage aspect, 28 positive and 64 

negative sentiments for the Basic Needs aspect, and 93 positive and 40 negative sentiments for the Response 

and Action aspect. These datasets serve as the foundation for geospatial visualization and subsequent analysis 

to understand regional sentiment trends. 

The geospatial analysis for the Basic Needs aspect shows a distribution of 28 positive and 64 negative 

sentiments across multiple regions. Dominant negative sentiments are observed in regions such as Aceh, 

Bandung, Batusangkar, Depok, and Jakarta, indicating dissatisfaction with the availability of essential resources 

like food, water, and shelter. Conversely, positive sentiments are seen in Bogor, Buleleng, Gorontalo, and 

Jayapura, reflecting satisfaction with the accessibility of basic necessities. These results highlight regional 

disparities in the fulfillment of basic needs during disaster response efforts. The geospatial visualization for the 

Basic Needs aspect can be seen in Fig. 5. 

The results for the Impact and Damage aspect reveal 73 positive and 309 negative sentiments. Negative 

sentiments dominate regions such as Aceh, Agam, Bandung, Denpasar, Jakarta, and Medan, where significant 

destruction, casualties, and economic losses are frequently highlighted. In contrast, positive sentiments emerge 
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in regions like Jawa Tengah, Payakumbuh, and Riau, suggesting perceptions of effective recovery efforts and 

resilience in handling disaster impacts. These findings emphasize the varying severity of disaster impacts and 

the importance of recovery initiatives across different regions. The geospatial visualization for the Impact and 

Damage aspect can be seen in Fig. 6. 

 

  

Fig. 5. Dominant Sentiments for the Basic Needs Aspect  

  

Fig. 6. Dominant Sentiments for the Impact and Damage Aspect 

For the Response and Action aspect, the analysis identifies 93 positive and 40 negative sentiments across 

several regions. Positive sentiments are concentrated in areas such as Agam, Bali, Bekasi, Depok, Padang 

Panjang, and Yogyakarta, where respondents acknowledged effective aid distribution and swift rescue efforts. 

Conversely, negative sentiments are predominantly observed in Aceh, Bogor, Jambi, Medan, and Pekanbaru, 

reflecting dissatisfaction with the timeliness and adequacy of disaster response measures. These results 

highlight the variability in public perception regarding disaster response effectiveness. The geospatial 

visualization for the Response and Action aspect can be seen in Fig. 7. 

The analysis of the Weather and Nature aspect reveals 26 positive and 355 negative sentiments. Negative 

sentiments are heavily concentrated in regions such as Aceh, Bandung, Jakarta Timur, Jawa Barat, Jawa 

Tengah, and Padang, where extreme weather conditions, landslides, volcanic eruptions, and floods are frequent 

concerns. Positive sentiments, on the other hand, appear in regions like Maluku, Jayapura, and Bogor, indicating 

perceptions of improvements in weather conditions or resilience to natural disasters. These findings underscore 

the ongoing challenges posed by environmental conditions during and after disasters. The geospatial 

visualization for the Weather and Nature aspect can be seen in Fig. 8. 
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Fig. 7. Dominant Sentiments for the Response and Action Aspect  

 

Fig. 8. Dominant Sentiments for the Weather and Nature Aspect 

C. Discussion 

The evaluation results of the SVM model reveal distinct patterns in kernel performance across various 

aspects, demonstrating the adaptability of the linear kernel in sentiment classification tasks. For Basic Needs, 

Impact and Damage, Response and Action, and Weather and Nature, the linear kernel consistently delivered 

the best performance, showcasing its efficiency in datasets with relatively well-defined patterns. The linear 

kernel's robustness is evident in its ability to handle diverse datasets, capturing underlying relationships within 

text data while maintaining computational simplicity. The polynomial and RBF kernels, while effective in 

capturing non-linear patterns, showed slightly lower performance due to the nature of the datasets, which appear 

to favor simpler, linear relationships. These results are consistent with studies like Ainun Zumarniansyah et al. 

and Kharisma Wiati Gusti, which highlighted SVM’s strength in high-dimensional and imbalanced datasets. 

The integration of SMOTE and TF-IDF, combined with Stratified K-Fold Cross Validation, ensured balanced 

datasets and reliable model evaluation. This framework emphasizes the adaptability of the linear kernel for 

diverse sentiment classification tasks, making it suitable for practical applications in disaster-related contexts. 

The geospatial analysis complements the evaluation results by providing actionable insights into the regional 

distribution of sentiments. Regions directly affected by the eruption of Mount Marapi, such as Payakumbuh, 

Bukittinggi, Padang Panjang, and Batusangkar, exhibit dominant negative sentiments. These sentiments are 

largely driven by firsthand experiences of physical damage, limited access to basic needs, and delays in aid 
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distribution. However, certain directly affected regions, such as Payakumbuh and Bukittinggi, also display 

clusters of positive sentiment, likely attributed to successful community-driven recovery initiatives and 

effective local government responses. Conversely, regions not directly impacted, such as Jakarta and Bandung, 

show negative sentiments that are more policy-driven, focusing on criticisms of government policies and 

perceived inefficiencies in aid distribution. The stark contrast in sentiment patterns between directly and 

indirectly affected regions underscores the importance of considering geographical proximity and contextual 

factors in sentiment analysis.  

A deeper exploration of geospatial sentiment patterns reveals a flow of sentiment that transitions from 

tangible concerns in disaster-hit regions to broader public concerns shaped by media narratives and perceptions 

in indirectly affected areas. For instance, the clustering of negative sentiments in Sumatera Barat emphasizes 

the concentrated impact of the disaster, while the dispersed sentiment patterns in Java and Bali highlight the 

influence of secondary factors like media coverage and public discourse. This analysis demonstrates the 

importance of integrating geospatial insights into sentiment analysis, as it bridges the gap between textual 

sentiment and spatial understanding, offering a more nuanced perspective on public responses to disasters. 

Despite the strengths of the proposed approach, threats to validity must be acknowledged. The reliance on 

geo-tagged Twitter data introduces biases, as such data may not fully represent the affected populations or 

capture the entire sentiment landscape. Additionally, noise in the dataset, uneven geographical distribution of 

tweets, and the use of predefined aspects may limit the generalizability of the findings. These limitations align 

with observations in previous studies, such as those by Tao Hu et al., which emphasized the need for more 

balanced datasets and dynamic categorizations. Future research could address these limitations by incorporating 

larger, more diverse datasets and exploring advanced geospatial clustering techniques to enhance the robustness 

of sentiment analysis. 

Overall, this study demonstrates the effectiveness of combining SVM-based sentiment classification with 

geospatial analysis to understand public sentiment during natural disasters. The linear kernel’s consistent 

performance across all aspects highlights its robustness and efficiency, while the integration of geospatial 

insights provides valuable data for prioritizing resource allocation and refining disaster communication 

strategies. By bridging sentiment classification and geospatial mapping, this research contributes to advancing 

methodologies in disaster management and offers a comprehensive framework for understanding public 

sentiment at both the textual and spatial levels. 

 

V. CONCLUSION 

This research successfully applied sentiment analysis and geospatial visualization to understand public 

responses during the Mount Marapi eruption, focusing on four aspects, which are Basic Needs, Impact and 

Damage, Response and Action, and Weather and Nature. By employing the Support Vector Machine (SVM) 
algorithm with linear, polynomial, and RBF kernels, the linear kernel demonstrated consistent superiority across 

all aspects due to its robustness in capturing well-defined patterns. The integration of preprocessing techniques, 

such as TF-IDF for feature extraction and SMOTE for class balancing, ensured the reliability of results, while 

geospatial mapping revealed distinct sentiment patterns, highlighting the challenges and successes in disaster 

response across various regions. The findings show that sentiment distribution patterns differ significantly 

between directly and indirectly affected regions, providing actionable insights for disaster management. This 

study advances existing methodologies by combining SVM-based sentiment analysis with geospatial insights, 

filling critical gaps in understanding regional disparities in public sentiment during disasters. Key advantages 

of this approach include its ability to identify areas requiring prioritized intervention and its adaptability to 

diverse datasets. Future research should address identified limitations, such as dataset size, the reliance on geo-

tagged Twitter data, and simplified visualization techniques, by exploring richer datasets and advanced 

geospatial clustering methods. These improvements can further enhance the applicability of sentiment and 
geospatial analysis in diverse contexts. Overall, this study underscores the value of integrating textual and 

spatial analysis for more effective disaster response and planning strategies. 
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DATA AND COMPUTER PROGRAM AVAILABILITY 

Data and program used in this paper can be accessed in the following site github.com: 

https://github.com/AgungHakim/Geospatial-Sentiment-Analysis-Using-Twitter-Data-on-Natural-Disasters-in-

Indonesia-with-SVM. 
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