

OPEN ACCESS

ISSN 2356-5462

http://socj.telkomuniversity.ac.id/ijoict/

195

Intl. Journal on ICT

Vol. 10, No. 2, Dec 2024. pp. 195-213

doi: 10.21108/ijoict.v10i2.1015

Received on 20 Nov 2024. Revised on 20 Dec 2024. Accepted and Published on 10 Jan 2025.

FlowForge: A Prototype for Generating User

Stories and Gherkin Test Cases from BPMN

with DMN Integration and Pattern Matching
Rosa Reska Riskiana1*, Ryan Oktaviandi Susilo Wibowo2, Arpriansah Yonathan3

1,2,3 School of Computing, Telkom University

Bandung, Indonesia

* rosareskaa@telkomuniversity.ac.id

Abstract

Miscommunication between business stakeholders and developers often leads to inconsistencies in

software requirements specifications, creating a gap in understanding that can result in software

failure. Behaviour-Driven Development (BDD) aims to address this by fostering collaboration and

ensuring a shared understanding through structured natural language, primarily using Gherkin

syntax for test case documentation. However, while BDD helps bridge this communication gap,

integrating it with Business Process Model and Notation (BPMN) to automate test case generation

remains challenging, especially when handling complex pathways and evolving process models.

This research addresses these challenges by combining Decision Model and Notation (DMN) with

pattern matching techniques and introduces FlowForge, a prototype implemented in this research

that automates the generation of User Stories and Gherkin test cases directly from BPMN models.

FlowForge demonstrates high completeness in BPMN element extraction, with an average

completeness of 98.25%. Path accuracy varied, with an average of 87.5%, and execution time

averaged 0.36 seconds, showcasing efficiency. The integration of DMN allows for better handling

of exceptions and decision logic, providing fully detailed Gherkin test cases. This research improves

the automation and reliability of BPMN-based testing and offers a foundation for future work to

enhance accuracy, efficiency, and coverage.

Keywords: BPMN, DMN, User Story, Gherkin, BDD, FlowForge

I. INTRODUCTION

FTER decades of advancements in software development, many software-related accidents can still be

traced back to issues in requirements specifications. Software Requirements Specifications (SRS) often

rely heavily on the personality, experience, and skills of developers to accurately capture requirements from

business stakeholders or non-IT personnel [1]. Miscommunication between business analysts and developers,

along with inconsistencies between process modelling and the extracted requirements, remains a persistent issue

[2]. An agile methodology that addresses this gap is Behaviour-Driven Development (BDD). BDD aims to

enhance communication and foster a shared understanding of the software’s purpose among all stakeholders,

including developers, product owners, analysts, testers, customers, and business representatives [3], [4], [5].

In the BDD framework, there are three core activities: (1) discovering the required behaviour of the software

under development, (2) formulating and documenting this behaviour using structured natural language in the

form of user stories and scenarios described in Given/When/Then style known as Gherkin , and (3) automating

A

http://socj.telkomuniversity.ac.id/ijoict/

ROSA RESKA RISKIANA ET AL.:

FLOWFORGE: A PROTOTYPE FOR GENERATING USER STORIES AND GHERKIN TEST CASES FROM BPMN WITH DMN

INTEGRATION AND PATTERN MATCHING

196

tests for the documented behaviour [6]. In the discovering phase, Requirements Engineering offers various

techniques and notations for capturing software requirements, one of which is Business Process Model and

Notation (BPMN). BPMN is widely used for modelling complex business processes, providing organizations

with a visual representation that streamlines operations, improves efficiency, and ensures workflow consistency

[7]. BPMN inherits and combine elements from a number of previously notations for business process

modelling, including XML Process Definition Language (XPDL) and Activity Diagrams component of UML

[2].

One way to verify that business processes function correctly is through testing. However, while BPMN excels

in modelling, one of the critical challenges that remains is the automation of testing these process models.

Ensuring that modelled processes behave as expected in real-world scenarios is vital, yet manual testing of these

models can be time-consuming and prone to errors. Researchers have investigated automating BPMN testing,

with the most significant challenge being test case generation [8]. According to [9] there are two primary

approaches for this: the first involves using intermediate transformations with complementary models, as

leveraged by [10] and the second employs direct transformation techniques [2], [9], [11], and [12]. While

approaches that avoid intermediate models are suitable for rapidly changing process models, as they prevent

the creation of outdated representations that do not reflect the latest changes [8], the main drawback of this

approach is that most techniques supporting it only handle a limited subset of BPMN elements. This limitation

arises from the challenges in determining possible paths within complex models.
A recent study using pattern matching techniques to directly transform BPMN elements into natural-language

test cases in User Stories format and Gherkin test cases encountered this issue [2]. One of the challenges of this

current transformation from BPMN to User Stories is to find a way to embrace the complex pathways and

exceptions present in the models. Additionally, there is a need for a standardized glossary of words and

phrases to ensure that the generated Gherkin test cases are readable and reflect the natural flow of the business

process. Furthermore, the conceptual model that governs the extraction and transformation of BPMN elements

is still under development and needs to ensure scalability and flexibility to handle a variety of process types and

complexities. Finally, as BPMN models continue to evolve, it will be necessary to identify and specify new

patterns to ensure the transformation process can adapt to emerging process behaviors and structures.

Addressing these challenges is essential to fully realizing the potential of automated BPMN-based testing. The

study in [9] emphasizes that establishing a comprehensive and unambiguous pattern matching between BPMN

elements and Gherkin syntax is a highly complex task. It suggests a structured approach: (1) identifying which

BPMN elements and patterns are relevant and should be represented in the test cases, and (2) defining a clear

and unambiguous translation of each BPMN element or pattern into corresponding Gherkin syntax to ensure

consistent pattern matching.

This paper focuses on addressing the challenges related to complex pathways and exception handling as well

as specifying new patterns to ensure that the transformation process can adapt to evolving process structures

and behaviors. By enhancing support for various gateway types, this study aims to bridge one of the significant

gaps in the current prototype, enabling it to handle more complex BPMN scenarios that are common in real-

world applications. Additionally, the specification of new patterns will facilitate a more flexible transformation

process that can respond to emerging business process trends. While other challenges, such as developing a

standardized glossary for readability and improving the conceptual model for scalability, remain important,

these will be reserved for future research to build upon the foundation established in this work.

To address the challenges of automating test case generation from BPMN models, integrating Decision

Model and Notation (DMN) offers a promising solution. DMN allows for precise modelling of decisions and

business rules, particularly for complex decision-heavy workflows where BPMN alone may struggle. A notable

solution is presented in [13], which utilizes an integration approach between BPMN and DMN to reveal all

potential end-to-end execution paths of a business process. This approach results in test case specifications in a

domain-specific language (DSL). A study [14] demonstrated that incorporating DMN enhances the accuracy

and completeness of test cases by explicitly capturing decision logic. This integration ensures that User Stories

and Gherkin test cases are generated with clearer mapping to decision points, improving the handling of

gateways, exceptions, and conditional flows while ensuring comprehensive test coverage. As [9][14] has yet to

INTL. JOURNAL ON ICT VOL. 10, NO.2, DECEMBER 2024 197

be implemented with a generating tool, we present FlowForge, a tool designed to assist users in automatically

generating User Stories and Gherkin test cases directly from BPMN models. FlowForge integrates DMN and

pattern-matching techniques to tackle the challenges associated with complex pathways and exception handling.

This research offers several significant benefits. Enhancing support for various gateway types will enable the

transformation process to handle a wider range of BPMN scenarios, reflecting the complexity and variability

of real-world applications. The specification of new patterns ensures the transformation process is adaptable to

evolving process structures and behaviours. These improvements will not only bridge critical gaps in existing

prototypes but also refine the generation of test cases. As a result, the proposed approach contributes to

advancing automation capabilities, reducing manual effort, and increasing the reliability of business process

testing in dynamic environments.

II. LITERATURE REVIEW

A comprehensive literature review was carried out to examine the latest approaches and methodologies for

automating the generation of test cases in Gherkin format from BPMN process diagrams. The review aimed to

identify research gaps and limitations while also providing readers with an understanding of BPMN.

A. Related Work

Current research on BPMN-based test case generation encounters several fundamental challenges that limit

its effectiveness in practical applications. De Moura et al. introduced a two-step methodology for end-to-end

test case generation. This process begins with traversing the XML Process Definition Language (XPDL)

representation of a BPMN model to produce an Excel file that documents all process flows. In this file, columns

represent specific tasks, while rows correspond to possible flows, with tasks included in each flow marked by

an "X." Test scripts are then automatically generated based on the information in this table [11]. While this

method successfully produces Gherkin-based test scenarios as shown in Fig. 1, it has certain limitations. The

step definitions generated are incomplete, particularly in the “Then” component of the Given-When-Then

format of Gherkin scenarios which specifies the expected outcome corresponding to a particular Given and

When condition. While the authors do not provide detailed explanations of the Gherkin generation process, it

can be inferred that the extracted process flows, presented as tables, lack clarity in capturing outcomes. This

limitation results in Gherkin scenarios that primarily address preconditions (Given) and current states (When),

without adequately detailing expected results (Then). Another drawback is the treatment of parallel paths as

separate flows, which fails to accurately represent real-world scenarios and provides no differentiation from

conditional paths. Limitations of this approach are that DMN are not taken into account [13].

Fig. 1. Test Scenarios Generated [11]

ROSA RESKA RISKIANA ET AL.:

FLOWFORGE: A PROTOTYPE FOR GENERATING USER STORIES AND GHERKIN TEST CASES FROM BPMN WITH DMN

INTEGRATION AND PATTERN MATCHING

198

Paiva et al. addressed some of these limitations in their work by introducing a tool called ETAP-Pro (End-to-

end Test Automation Platform for Processes), which employs a keyword-driven approach. ETAP-Pro employs

Depth-First Search (DFS), similar to the approach used by [13], to generate all possible paths within a BPMN

model represented in XPDL format. Unlike earlier methods, ETAP-Pro considers all possible activity orders in

parallel branches, rather than treating them as separate process flows. Furthermore, it generates complete

Gherkin scenarios with the Given-When-Then structure. However, this approach also has shortcomings,

particularly its inability to capture role-responsibilities, which are integral to BPMN models. The keyword-

driven approach outlines test cases or processes (associated with different paths in the model), activities (which

represent the actions to be performed), and technical methods (reusable methods that support these activities).

However, it does not account for pools to extract role-specific responsibilities, which are essential for accurately

modelling BPMN-based workflows [12].

Von Olberg and Strey [9] propose generating clear and functional test cases from BPMN models using

Gherkin as the test case definition language. They introduce two approaches for achieving this clarity: an

intermediate transformation and a direct transformation. Additionally, they provide examples of test scenarios

generated using these two approaches, as illustrated in Fig. 2. Their examples demonstrate the ability to produce

complete Gherkin scenarios, including information about BPMN pools that correspond to the roles performing

specific activities. However, based on our research, no prototypes of this approach have been implemented so

far.

Fig. 2. Test scenarios generated [9]

 Seqerloo et al [10] propose a distinct approach by first transforming BPMN into a state graph, where states

represent gateways and transitions denote paths. Parallel blocks are represented as a single state, enhancing the

Depth-First Search (DFS) algorithm used to traverse the graph and generate paths. These paths are then mapped

to test cases based on specific rules. However, a limitation of this approach is that some generated paths result

in false positives—instances where the generated paths do not accurately correspond to real-world scenarios,

potentially leading to incorrect or redundant test cases. In contrast, a recent study by Mateus et al. [2] introduces

a semi-automatic method for generating user stories and Gherkin scenarios directly from process models. This

approach utilizes transformation patterns, as illustrated in Fig. 5, which prior research [9] suggests can mitigate

information loss typically associated with intermediate transformation steps, such as those in [10]. The study

offers a clearer transformation process from BPMN to Gherkin by first generating user stories in natural

language, enabling better comprehension of the resulting Gherkin scenarios. This clarity helps bridge the

understanding gap between business stakeholders and developers, a feature lacking in previous approaches.

However, the resulting user stories primarily focus on the natural flow of the model while neglecting exception

scenarios, leading to incomplete Gherkin test cases.

This research closely aligns with our work, which aims to generate User Stories and Gherkin scripts through

pattern matching. Our contribution will involve refining the transformation process by introducing new patterns

and leveraging DMN to address both the natural flow and exception scenarios, ensuring the completeness of

the test generated. A generating tool named FlowForge will be developed to automate this approach to ensure

that each BPMN element is accurately mapped to corresponding test scenarios in a language that is both

technical and accessible to business stakeholders.

B. FlowForge

FlowForge is a tool that automates the generation of User Stories and Gherkin test cases from BPMN models,

simplifying the testing of business processes. By integrating DMN and utilizing pattern-matching techniques,

INTL. JOURNAL ON ICT VOL. 10, NO.2, DECEMBER 2024 199

FlowForge aim to ensure comprehensive test case generation for complex pathways, enhancing the

completeness of testing. The tool reduces manual effort by transforming BPMN models into test cases, while

its DMN integration supports complex decision logic, ensuring thorough coverage of business rules and

decision points. Additionally, FlowForge aims to:

1. Improve Automation: Automating the generation of test cases for BPMN models reduces the risk of human

error, enhances efficiency, and ensures comprehensive coverage of all potential execution paths.

2. Support Complex Decision Logic: By integrating DMN, FlowForge ensures that decision-heavy workflows

are accurately represented.

TABLE I

BPMN BASIC ELEMENTS [15]

Notation Element Type Description

Start Event Shows the starting point of a particular process, without any incoming

Sequence Flows. A circle with an open center represents different types of

trigger events, such as message, timer, condition, etc.

Intermediate

Event

Indicates where an event occurs within the process, between the start and end.

It highlights where Messages are expected or sent, where delays happen, and

where exceptions disrupt the normal flow through exception handling.

End Event Indicates the endpoint of a process, with no outgoing Sequence Flows.

Exclusive

(XOR) Gateway

Used to create alternative paths within a process flow, where only one path

can be taken. Each path is associated with a condition expression linked to the

outgoing Sequence Flows of the Gateway.

Parallel (AND)

Gateway

Used to create parallel paths that are executed simultaneously.

Inclusive

Gateway

Used to create both alternative and parallel paths within a process flow. All

condition expressions must be evaluated, but the design should ensure that at

least one path is followed.

Task An atomic activity within a process flow. A Task is used when the work in the

process cannot be further decomposed into smaller tasks.

Pool A graphical representation of a participant. A participant can represent a

specific entity (e.g., a company) or a more general role (e.g., buyer, seller,

etc.).

Lanes (within a

pool)

A Lane is a sub-partition within a process, typically located within a pool.

Sequence Flow Used to indicate the order of Flow Elements in a process. Each Sequence Flow

has a single source and a single target. Sequence Flow inherits attributes like

sourceRef and targetRef to define the incoming and outgoing flow.

 Message Flow Used to represent the flow of messages between two participants that are ready

to send and receive them. These flows must not connect objects within the

same pool.

Annotation A mechanism that allows the modeler to add supplementary text information

for the reader of a BPMN diagram.

ROSA RESKA RISKIANA ET AL.:

FLOWFORGE: A PROTOTYPE FOR GENERATING USER STORIES AND GHERKIN TEST CASES FROM BPMN WITH DMN

INTEGRATION AND PATTERN MATCHING

200

C. Business Process Model and Notation (BPMN)

BPMN is a graphical language used to model and execute business process models [15] provided by the

Object Management Group (OMG). Its primary goal is to provide a notation that is easily understood by various

stakeholders, including business analysts, technical developers, and business professionals. Table I illustrates a

visual representation of some key BPMN elements.

Events are used to initiate and conclude process instances, representing changes in behavior, such as

StartEvent, IntermediateEvent, and EndEvent while Activities denote points in the process

flow where work occurs, such as atomic tasks or sub-processes that encapsulate other processes.

ExclusiveGateways model alternative paths. It illustrates branching points for the subsequent process flow

[16], while ParallelGateways representing simultaneous paths within the workflow.

InclusiveGateways on the other hand, model alternative paths within a process flow, allowing one or

more paths to be taken based on specific conditions. It illustrates branching points where different paths can be

chosen depending on the evaluation of conditions. Because parallel branches execute concurrently, their order

of execution cannot be predetermined statically [7]. As a result, the sequence of execution is inconsequential,

allowing the branches to be considered sequentially in any arbitrary order [13]. These elements are

interconnected using SequenceFlows and are organized within Pools and Lanes, which can include text

Annotations to provide additional process details. Additionally, BPMN process diagrams support capturing

MessageFlows between different participants [15]. The structure of a BPMN diagram is stored in XML

format, ensuring compatibility and data exchange [14].

III. RESEARCH METHOD

The objective of this research is to develop a prototype capable of converting a BPMN into a Gherkin test

case. This conversion aims to bridge the gap between process modeling and behavior-driven development by

providing a seamless transition between process workflows and executable specifications. The approach utilized

in this study is the direct transformation integrating DMN and pattern matching, designed to maintain the logical

Fig. 3. Approach for Test Case Generation from BPMN to Gherkin

INTL. JOURNAL ON ICT VOL. 10, NO.2, DECEMBER 2024 201

structure of the BPMN elements while translating them into Gherkin syntax. Fig. 3 provides a detailed depiction

of how FlowForge achieves its goal through 6 steps process, which has been adapted from [14] and [17].

A. Extracting Elements in BPMN diagrams

The process begins with the identification of key elements within the BPMN diagram, such as events,

gateways, tasks, and sequence flows. It is important to detect BPMN decision tasks that will be used to

determine which task or subprocess will be executed. By analyzing the interconnections between these

elements, the process maps out the pathways through which decisions are made, along with the associated

conditions and outcomes. Table II provides an example of the extracted elements by FlowForge derived from

BPMN Credit Scoring Asynchronous shown by Fig. 4. All BPMN diagrams used in this research are sourced

from a GitHub repository maintained by Camunda, presented for research purposes. Camunda is a software

company providing an open-source platform for business process management (BPM). The reason for choosing

these BPMN diagrams is that they contain all the key elements mentioned earlier, such as events, all type of

gateways, tasks, and sequence flows. Additionally, all complete BPMN diagrams available in the repository

have been utilized, ensuring comprehensive coverage of process scenarios.

Fig. 4. BPMN Example of “Credit Scoring Asynchronous Process”

In Table II, all elements, including their Type, Name, and ID, are systematically mapped by FlowForge from

the BPMN. While multiple elements may share the same name, their unique IDs serve as the primary identifiers.

This distinction underscores the importance of utilizing IDs, rather than names, as the key reference for

subsequent processes to ensure accuracy and avoid ambiguity.

ROSA RESKA RISKIANA ET AL.:

FLOWFORGE: A PROTOTYPE FOR GENERATING USER STORIES AND GHERKIN TEST CASES FROM BPMN WITH DMN

INTEGRATION AND PATTERN MATCHING

202

B. Searching for Decision Tasks/Decision Points

After identifying all the elements in a BPMN, FlowForge will determine which elements or tasks are required

to develop DMN rules. This involves identifying tasks or elements associated with specific conditions, focusing

on decision-making tasks. These are typically represented by decision points such as ExclusiveGateways

and InclusiveGateways, which guide the flow based on predefined conditions.

C. Generate DMN Rules

After detecting the decision tasks, FlowForge create specific DMN rules based on these decision points. For

each task and gateway extracted on the previous step, the incoming and outgoing flows, along with all associated

conditions, are analyzed. Subsequently, any branching points with defined conditions are identified to establish

the corresponding DMN rules. This involves defining the decision logic that governs how each decision task

operates within the business process. For instance, in the decision task “Compute Credit Score”, we must check

whether the score is available or not before continuing to the next task. Table III provides an example of DMN

rules generated by FlowForge from the "Compute Credit Score" task. This table illustrates the decision logic

and criteria used to evaluate credit scores systematically. In the decision task "Compute Credit Score," an

ExclusiveGateway represents a condition that determines whether the credit score is available. Each

SequenceFlow from this gateway activates a specific task, leading to distinct IntermediateEvent

triggered by message catch. Two tasks depend on the outcome of this decision: if the score is available, the

"Send Credit Score" task is executed; if the score is unavailable, the "Report Delay" task is performed. These

decision rules are typically organized into DMN decision tables, such as the DMN Decision Table for "Compute

TABLE II

EXAMPLE EXTRACTED BPMN ELEMENTS OF “CREDIT SCORING ASYNCHRONOUS”

Element Type Element Name Element Id

Start Event scoring request received StartEvent_0o849un

Task request credit score Task_16winvj

Event based gateways - EventBasedGateway_02s95tm

Message Event delay information received IntermediateCatchEvent_0ujob24

Task report delay Task_0l942o9

Message Event credit score received IntermediateCatchEvent_0yg7cuh

Exclusive Gateway Merging - ExclusiveGateway_125lzox

Task send credit score Task_1fzfxey

End Event scoring request handled EndEvent_0rp5trg

Start Event scoring request received EndEvent_0khk0tq

Task compute credit score (level 1) Task_1r15hqs

Exclusive Gateway score available? ExclusiveGateway_0rtdod4

Sequence Flow Yes SequenceFlow_052bcer

Sequence Flow No SequenceFlow_0jh32vv

Task send credit score Task_06dqs9t

Message Event credit score received IntermediateCatchEvent_0a8iz14

Task report delay Task_01ouvha

Task compute credit score (level 2) Task_02m68xj

Task send credit score Task_07vbn2i

Exclusive Gateway Merging - ExclusiveGateway_11dldcm

End Event scoring request handled EndEvent_0khk0tq

TABLE III

DMN RULE OF “COMPUTE CREDIT SCORE (LEVEL 1)”

Task SourceRef Sequence Flow TargetRef

Compute Credit Score (Level 1) ExclusiveGateway Yes Send credit score

Compute Credit Score (Level 1) ExclusiveGateway No Report delay

INTL. JOURNAL ON ICT VOL. 10, NO.2, DECEMBER 2024 203

Credit Score," providing a structured and consistent framework for decision-making based on varying

conditions.

D. Generate Path

The process of generating test paths from DMN rules and BPMN files follows a methodical approach that

combines graph traversal techniques with data filtering. Initially, DMN rules are transformed into a DataFrame,

encapsulating the decision logic that guides the path selection. Simultaneously, the BPMN file is parsed to

extract key components such as sequence flows, start and end events, and node names, creating a graph-like

structure where nodes represent tasks, gateways, and events. To explore all potential paths from start to end

events, a depth-first search (DFS) algorithm is employed, efficiently traversing the graph and recording each

route while ensuring that cycles are avoided [12][13]. Afterward, the generated paths are filtered through the

DMN rules, selecting those that encompass relevant decision points and their corresponding outcomes. Finally,

the selected test paths, along with detailed descriptions, are exported to an Excel file for documentation and

analysis. This structured methodology ensures that the generated test paths are both comprehensive and aligned

with business logic, facilitating robust testing and validation of business processes. Table IV provides an

example of the generated test paths, showcasing each element along with its unique identifier.

TABLE IV

GENERATED PATH OF “CREDIT SCORING ASYNCHRONOUS”

Path Id Path Description

1 scoring request received (StartEvent_0o849un), compute credit score (level 1) (Task_1r15hqs), score

available? (ExclusiveGateway_0rtdod4), send credit score (Task_07vbn2i),

ExclusiveGateway_125lzox, scoring request handled (EndEvent_0khk0tq)

2 scoring request received (StartEvent_0o849un), compute credit score (level 1) (Task_1r15hqs), score

available? (ExclusiveGateway_0rtdod4), report delay (Task_01ouvha), compute credit score (level 2)

(Task_02m68xj), send credit score (Task_06dqs9t), ExclusiveGateway_125lzox, scoring request

handled (EndEvent_0khk0tq)

3 scoring request received (StartEvent_1els7eb), request credit score (Task_16winvj),

EventBasedGateway_02s95tm (EventBasedGateway_02s95tm), credit score received

(IntermediateCatchEvent_0yg7cuh), ExclusiveGateway_11dldcm (ExclusiveGateway_11dldcm), send

credit score (Task_1fzfxey), scoring request handled (EndEvent_0rp5trg)

4 scoring request received (StartEvent_1els7eb), request credit score (Task_16winvj),

EventBasedGateway_02s95tm, delay information received (IntermediateCatchEvent_0ujob24), report

delay (Task_0l942o9), credit score received (IntermediateCatchEvent_0a8iz14),

ExclusiveGateway_11dldcm, send credit score (Task_1fzfxey), scoring request handled

(EndEvent_0rp5trg)

E. Generate User Stories

The process of generating user stories from test paths and BPMN files involves a systematic approach to

extract relevant information and construct narratives that reflect the user's interaction with a process. Initially,

the BPMN file is parsed to identify lanes, which represent different user roles, and to associate tasks and

gateways with their corresponding names. This mapping facilitates the understanding of which user is

responsible for each task. Concurrently, the test paths, represented in JSON format, are loaded, providing a

structured overview of the various routes through the process, each associated with a specific description.

Next, the user stories are crafted by iterating through each path in the JSON data. For each step in the path,

the corresponding role, task or gateway name, and any conditions are retrieved from the earlier mappings. This

information is then woven into user stories described in the BDD context. We will use the template for

specifying user stories, shown as follows [18]: "As <type of user>, I want to <desired goal> so that

<achieved value>." This narrative style not only clarifies the user's perspective but also highlights the

specific tasks they are expected to perform under varying conditions. Finally, the generated user stories are

saved to a text file, providing a comprehensive documentation of user stories that can be utilized for testing,

ROSA RESKA RISKIANA ET AL.:

FLOWFORGE: A PROTOTYPE FOR GENERATING USER STORIES AND GHERKIN TEST CASES FROM BPMN WITH DMN

INTEGRATION AND PATTERN MATCHING

204

validation, or stakeholder communication. This method ensures that the generated user stories are directly

aligned with both the BPMN model and the defined test paths, enhancing the relevance and usability of the

resulting documentation.

To convert the generated paths into user stories, we utilized certain patterns from prior research [2] as outlined

in Fig. 5, which identified patterns through an analysis of various business models, resulting in a non-exhaustive

pattern list. Moreover, we made additional patterns to align them with the structure of our BPMN, as outlined

in Fig 6.

F. Generate Gherkin

The process of generating Gherkin test cases from user stories begins by analyzing narrative user stories to

extract key components such as the user role, action, and conditions. These components are then transformed

into USC (User Stories with Condition) rules, which include IDs and names for tasks along with conditions or

SequenceFlows. USC rules are stored in a JSON file and used to generate the User Stories with Conditions.

Alongside, MR (Message Rules) are developed to account for IntermediateEvent elements, ensuring

the test cases align with the predefined conditions. These MR rules include the ID of the event and associated

tasks, similar to USC rules.

Fig. 5. User Stories Pattern by Mateus et al. [2]

INTL. JOURNAL ON ICT VOL. 10, NO.2, DECEMBER 2024 205

Once the USC and MR rules are defined, the Gherkin syntax is used to convert the user story into test cases.

Gherkin utilizes a straightforward syntax that is easy to learn and consists of only a limited number of operators.

There are the following Gherkin operators [1]:

1. FEATURE: represents a specific functionality of the software.

2. SCENARIO: identifies a sequence of events that implement a portion of the FEATURE

3. GIVEN: specifies the preconditions or initial state required for the SCENARIO

4. WHEN: describes the actions or events that occur during the execution or testing process

5. AND: acts as a logical connector used to link multiple elements of complex preconditions, actions, or

outcomes.

6. BUT: functions similarly to AND but is used to express negative conditions

The resulting Gherkin test cases preserve the original intent of the scenarios while adhering to Behavior-

Driven Development (BDD) conventions. This ensures clarity for both technical and non-technical

stakeholders. The test cases are stored in a dedicated file for use in automated testing, ensuring alignment with

the defined user requirements. Fig. 7 depicts the pattern developed in this research to generate the Gherkin test

cases.

IV. RESULTS AND DISCUSSION

This section presents four distinct evaluations. First, we compare our Gherkin test case generation approach

with that of other relevant studies, focusing on its ability to capture key elements such as Given-When-Then

Fig. 6. Additional User Stories Pattern

ROSA RESKA RISKIANA ET AL.:

FLOWFORGE: A PROTOTYPE FOR GENERATING USER STORIES AND GHERKIN TEST CASES FROM BPMN WITH DMN

INTEGRATION AND PATTERN MATCHING

206

constructs, events, tasks, lane, gateways, and sequence flows. Second, we assess the generated test cases by

evaluating both the completeness of the elements and the accuracy of the extracted paths. Element completeness

ensures that all BPMN elements are captured, while path accuracy verifies that the extracted paths align with

those present in the BPMN model, ensuring comprehensive test coverage. Lastly, we evaluate the execution

time to analyze the efficiency of the approach, measuring the time taken from inputting the BPMN model to

generating the Gherkin scenarios.

This study utilizes four BPMN diagrams: Credit-Scoring-Asynchronous (Fig. 4), Dispatch-of-Goods,

Recourse, and Self-Service Restaurant. These diagrams were selected based on their complexity, which

effectively captures the common challenges encountered in BPMN modeling. The Credit-Scoring-

Asynchronous diagram includes an IntermediateEvent, illustrating asynchronous communication, and

features an exception flow represented by an ExclusiveGateway. Dispatch-of-Goods diagram incorporates

a ParallelGateway, requiring tasks to be executed concurrently. Additionally, the Recourse and Self-

Fig. 7. Gherkin Pattern

INTL. JOURNAL ON ICT VOL. 10, NO.2, DECEMBER 2024 207

Service Restaurant BPMN diagrams, included in the repository used for this study, further contribute to the

variety and complexity of the scenarios explored. These characteristics make the selected diagrams particularly

suitable for evaluating the proposed approach in diverse and intricate BPMN contexts.

A. Evaluation of the Gherkin test case generated

We selected several relevant studies to compare with our approach, focusing exclusively on papers that

generate Gherkin test cases. These include [2], [9], [11], and [12]. Table V summarizes the comparison,

evaluating these approaches based on their support for Gherkin structures and the BPMN elements captured in

their Gherkin test cases.

TABLE V

COMPARISON OF GHERKIN TEST GENERATED

Category Criteria
De Moura et al.

[11]

Paiva et al.

[12]

Mateus et al.

[2]

Von Olberg

& Strey [9]
FlowForge

Gherkin

structure

Given ✓ ✓ ✓ ✓ ✓

When ✓ ✓ ✓ ✓ ✓

Then - ✓ ✓ ✓ ✓

BPMN

Elements

Activity ✓ ✓ ✓ ✓ ✓

Lane - - ✓ ✓ ✓

Event - ✓ Unclear Unclear ✓

Gateway ✓ ✓ Unclear ✓ ✓

Sequence Flow -

✓ Unclear ✓ ✓

In terms of Gherkin structures, [2], [9], [12] and FlowForge fully support all three components of Gherkin

syntax ("Given," "When," and "Then"), while [11] lacks support for the "Then" component. An example of a

Gherkin test case generated by our approach is shown in Fig. 9, which presents the test case for a BPMN Credit

Scoring Asynchronous process.

Fig. 8. Example of Generated User Stories from Credit-Scoring-Asynchronous Path 3 and Path 1

These test cases represent user stories derived from paths generated through the extraction of BPMN elements

integrated with DMN. Fig. 8 illustrates a user story example from the Credit-Scoring-Asynchronous process

(Paths 3 and 1), showcasing the inclusion of an IntermediateEvent and ExclusiveGateway, which

play critical roles in process flow. This scenario highlights how events and gateways are integrated into

ROSA RESKA RISKIANA ET AL.:

FLOWFORGE: A PROTOTYPE FOR GENERATING USER STORIES AND GHERKIN TEST CASES FROM BPMN WITH DMN

INTEGRATION AND PATTERN MATCHING

208

workflows, capturing the conditional logic and transitions necessary for processing credit scoring requests. Fig.

9 demonstrates the corresponding Gherkin scenarios for the same paths, adhering to predefined rules to ensure

the test cases reflect the process flow and decision logic accurately, including conditions tied to the

IntermediateEvent and ExclusiveGateway.

Regarding BPMN elements captured in the Gherkin test cases, FlowForge stands out as the only approach

that fully supports all listed basic BPMN elements. In contrast, the Gherkin generated by [11] captures only

Activities and gateways, omitting other elements. For [12], all elements are supported except for the Lane

element, which represents process participants. The support provided by [2] for Event, Gateway, and

SequenceFlow remains unclear due to the lack of Gherkin examples and a defined pattern in the paper. The

Gherkin generated by [9] is the only paper that nearly captured all BPMN element, with the exception of one,

an Event, which can’t be definitely identified as captured. This is because they only provide one example, and

it is important to note that it is merely an example and has not been implemented yet. Therefore, the output

consists solely of the plan in Gherkin format. Overall, FlowForge demonstrates the most comprehensive

support, capturing both complete Gherkin syntax and all basic BPMN elements.

Fig. 9. Example of Generated Gherkin Test Case from Credit-Scoring-Asynchronous Path 3 and Path 1

B. Element Completeness

From the transformation of the four BPMN diagrams utilized in this research, we proceed to analyze

completeness of element generated by FlowForge to determine whether the generated test cases effectively

INTL. JOURNAL ON ICT VOL. 10, NO.2, DECEMBER 2024 209

encompass all BPMN elements. This evaluation ensures that each element within the BPMN diagrams is

represented in the test cases, verifying that all possible execution paths are accounted for. As illustrated in Table

VI, the analysis compares the extracted elements and extracted paths with those present in the original BPMN

file, highlighting the completeness of the transformation process.

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)

(1)

As observed in Equation (1), the formula presented is utilized in Table VI to calculate the Element

Completeness. This equation serves as the foundational method for evaluating the degree to which all elements

within the BPMN models are accurately identified and extracted. By applying this formula, the study ensures a

standardized approach to measuring the completeness of elements across different BPMN models, providing a

consistent basis for comparison and analysis.

TABLE VI

ELEMENT COMPLETENESS RESULT

BPMN Name Total Element

from BPMN

Total Element

Extracted
Element

Completeness
Dispatch-of-Goods 15 15 100%

Credit-Scoring-Asynchronous 19 19 100%

Recourse 20 20 100%

Self-Service Restaurant 30 28 93%

Average 98.25%

As shown in Table VI, among the four BPMN models utilized in this study, the BPMN for the Self-Service

Restaurant achieved an Element Completeness score of only 93%. This lower score is attributed to a bug present

in one of the prototype’s functions, specifically during the process of extracting elements from the BPMN. The

algorithm employed failed to detect an element with a looping structure in the BPMN, resulting in incomplete

element recognition.

C. Path Accuracy

To ensure the accuracy of the generated test cases, we also evaluated the correctness of the paths produced

by FlowForge using equation (2). Accuracy is essential to determine whether the generated paths precisely

match the expected number of paths, ensuring no paths are missing that could result in incomplete test cases.

The accuracy results are presented in Table VII.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑜𝑡𝑎𝑙 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)

(2)

TABLE VII
PATH ACCURACY RESULT

BPMN Name Expected Total

Path from BPMN

Total Path

Extracted

Path Accuracy

Dispatch-of-Goods 4 3 75%

Credit-Scoring-Asynchronous 4 4 100%

Recourse 5 5 100%

Self-Service Restaurant 4 3 75%

Average 87.5%

For the BPMN model "Dispatch-of-Goods," the process contains 4 expected paths; however, only 3 paths

were successfully generated, resulting in an accuracy rate of 75%. This discrepancy is attributed to the

implementation of BPMN gateway concepts in FlowForge. For instance, in the case of a ParallelGateway

ROSA RESKA RISKIANA ET AL.:

FLOWFORGE: A PROTOTYPE FOR GENERATING USER STORIES AND GHERKIN TEST CASES FROM BPMN WITH DMN

INTEGRATION AND PATTERN MATCHING

210

that branches into two Activities, the generated path is simplified into one sequence of activities instead

of separate branches. For the BPMN model "Self-Service Restaurant," the accuracy rate is also 75%, as one

path includes a looping structure that fails to reach the EndEvent. This limitation arises because valid paths

must traverse from the StartEvent to the EndEvent. For the remaining two BPMN models, all paths were

generated accurately, achieving 100% accuracy.

D. Execution Time

The other metric used in this research is measuring the execution time from the moment the BPMN file is

uploaded until the process of generating User Stories and Gherkin Test Cases is completed. This procedure is

repeated three times, and the average execution time is calculated for each BPMN model utilized in the study.

As shown in Table VIII, this approach ensures the reliability and consistency of the results by mitigating

potential variations in execution time across multiple trials. By averaging the results, the study provides a more

accurate representation of the algorithm's performance and efficiency in handling different BPMN models.

TABLE VIII

EXECUTION TIME OF EVERY BPMN USED

BPMN Name Run 1 Run 2 Run 3 Average

Dispatch-of-Goods 0.30s 0.30s 0.30s 0.30s

Credit-Scoring-Asynchronous 0.80s 0.30s 0.40s 0.50s

Recourse 0.40s 0.40s 0.30s 0.36s

Self-Service Restaurant 0.30s 0.30s 0.30s 0.30s

Average 0.36s

As shown in Table VIII, the average execution time for the BPMN models Dispatch-of-Goods, Recourse,

and Self-Service Restaurant is recorded at 0.3 seconds. In contrast, the longest execution time is observed in

the Credit-Scoring-Asynchronous BPMN model, with an average of 0.5 seconds. This discrepancy highlights

the varying complexity, and processing demands of different BPMN models, with the Credit-Scoring-

Asynchronous model requiring additional time for element extraction and generation processes. The results

emphasize the influence of BPMN structure and algorithmic efficiency on overall execution performance.

E. Discussions

The findings from the four evaluations conducted reveal several limitations in our approach. First, the

extraction of BPMN elements by our tool shows a notable lack of support for detecting elements involved in

looping structures, an issue similarly noted in prior studies [12][13]. This limitation is prevalent in research

relying on direct transformation of BPMN models. While such direct transformations ensure completeness

without considering model modifications, utilizing intermediate representations, such as state graphs, could

address this issue, as demonstrated in [10]. Due to this shortcoming, the generated paths do not entirely reflect

the BPMN structure, as two elements, specifically tasks and events, remain undetected.

Second, the generated paths often fail to accurately represent the actual business process flow, particularly

for cross-pool or MessageFlows, as shown in Table IV. The expected paths, fully reflecting the business

flow, are outlined in Table IX, where only two combined paths emerge from the sequences in Table IV.

Additionally, a critical limitation is the inability to identify the default path within InclusiveGateways in

the BPMN model. InclusiveGateways, by nature, allow for either a single default path or concurrent

execution of multiple paths when outgoing flows lack explicit expressions. Our study does not currently provide

mechanisms to discern or validate the default path in such scenarios. This limitation hampers the thorough

validation of all business process flows and highlights a gap in the existing body of research, as no prior work

has fully addressed this issue. However, it can be confidently asserted that all paths within the BPMN are

adequately covered.

Third, regarding test case generation time, our approach demonstrates efficiency, with an average processing

time of 0.3 seconds from the BPMN input to Gherkin test case generation. This aligns with the performance

observed in related studies[10][11]. However, this metric does not account for the execution time of the test

INTL. JOURNAL ON ICT VOL. 10, NO.2, DECEMBER 2024 211

cases themselves, as this aspect lies beyond the scope of our current research. Future studies should analyze the

execution of generated Gherkin scripts using platforms such as Cucumber to gain a deeper understanding of

execution performance.

TABLE IX

EXPECTED GENERATED PATH OF “CREDIT SCORING”

Path Combined Path

1 & 3 Scoring request received → Compute credit score (level 1) → Exclusive Gateway → Report

delay→ Delay information received → Report delay → Credit score received → ExclusiveGateway

→ Send credit score → Scoring request handled

2 & 4 Scoring request received → Compute credit score (level 1) → Exclusive Gateway → Send credit

score→ Credit score received → ExclusiveGateway → Send credit score → Scoring request handled

Lastly, the patterns employed in this study do not encompass all types of BPMN elements. For instance,

Event-basedGateways that has another type besides message, such as timer, conditional, and signal types

are insufficiently addressed. This underscores the need for further development and refinement of patterns, as

highlighted in this study and prior research [2]. Expanding these patterns will enhance the comprehensiveness

and applicability of the approach.

V. CONCLUSION AND FUTURE WORK

This paper presented FlowForge, which transforms BPMN models into User Story and Gherkin test cases by

integrating DMN and pattern matching, as utilized in previous research [2][14]. While the element extraction

process achieved high accuracy, with three out of four BPMN models attaining 100% Element Completeness,

the Self-Service Restaurant model showed a lower score of 93%, with the total average completeness is 98.25%.

Path Accuracy also varied, with most models achieving 100%, but the Dispatch-of-Goods and Self-Service

Restaurant models only achieve 75%, with the average accuracy 87.5%. But Execution time averaged 0.36

seconds, showing that time taken to generate test case is efficient.

From that result, it is evident that incorporating DMN allows for the extraction of rules embedded within

BPMN diagrams, enabling the identification of exceptions represented by exclusive gateways. This approach

addresses the gaps identified in prior research [2]. Moreover, the generated Gherkin includes fully detailed

steps—Given, When Then—whereas prior studies, such as [11], lacked the “Then” step. Additionally, our

application specifies the roles responsible for performing activities within the user stories, addressing another

gap highlighted in earlier research [12]. This paper highlights the challenges in managing complex pathways,

exceptions, and evolving BPMN patterns during transformation.

In this position paper, we acknowledge that there are still several opportunities for improvement. A strategic

roadmap for future work is proposed to enhance the accuracy, efficiency, and coverage of the BPMN-based test

case generation approach. (1) Enhancing BPMN Element Detection: Improve the accuracy of detecting looping

structures and complex elements in BPMN models by integrating intermediate representations such as state

graphs. This approach will better capture looping relationships and address undetected elements, such as tasks

and events. Algorithmic improvements will be validated using diverse BPMN scenarios, particularly those

involving loops and branches. (2) Improving Path Representation: Develop mechanisms to handle cross-pool

and message flows more accurately while ensuring paths reflect actual business process flows. Focus on

identifying and validating default paths in Inclusive Gateways through heuristics or advanced modeling

techniques. These enhancements will ensure comprehensive and accurate path generation for all process flows.

(3) Expanding the Pattern: Extend the pattern library to include additional BPMN elements, such as various

event types (message, timer, conditional, signal) and event-based gateways. Adaptive patterns will be developed

to handle evolving BPMN standards, ensuring robustness and applicability to a wide range of models. (4)

Validate Test Case Execution Performance: Execute Gherkin-based test scripts on platforms like Cucumber to

analyze test execution performance. This will help identify inefficiencies in execution and guide refinements in

test case generation.

ROSA RESKA RISKIANA ET AL.:

FLOWFORGE: A PROTOTYPE FOR GENERATING USER STORIES AND GHERKIN TEST CASES FROM BPMN WITH DMN

INTEGRATION AND PATTERN MATCHING

212

DATA AND COMPUTER PROGRAM AVAILABILITY

Data used in this paper can be accessed in the following site https://github.com/camunda/bpmn-for-research

REFERENCES

[1] V. Sklyar and V. Kharchenko, “Domain Specific Modelling and Language for Safety-Critical and

Security-Critical Requirements Engineering,” in 2022 12th International Conference on Dependable

Systems, Services and Technologies (DESSERT), Athens, Greece: IEEE, Dec. 2022, pp. 1–7. doi:

10.1109/DESSERT58054.2022.10018738.

[2] D. Mateus, D. S. Da Silveira, and J. Araújo, “A Systematic Approach to Derive User Stories and Gherkin

Scenarios from BPMN Models,” in Business Modeling and Software Design, vol. 483, B. Shishkov, Ed.,

in Lecture Notes in Business Information Processing, vol. 483. , Cham: Springer Nature Switzerland,

2023, pp. 235–244. doi: 10.1007/978-3-031-36757-1_15.

[3] G. Nagy and S. Rose, Discovery: Explore behaviour using examples. CreateSpace Independent

Publishing Platform, 2018.

[4] D. Chelimsky, Ed., The RSpec book: behaviour-driven development with RSpec, Cucumber, and

Friends. Lewisville, Tex: Pragmatic, 2010.

[5] S. Rose and G. Nagy, Formulation: Document examples with Given/When/Then. Independently

published, 2021.

[6] Dion Moult and Thomas Krijnen, “Compliance checking on building models with the Gherkin language

and Continuous Integration,” Proc. EG-ICE 2020 Workshop Intell. Comput. Eng., pp. 294–303, 2020,

doi: 10.14279/DEPOSITONCE-9977.

[7] K. Schneid, H. Kuchen, S. Thöne, and S. Di Bernardo, “Uncovering data-flow anomalies in BPMN-

based process-driven applications,” in Proceedings of the 36th Annual ACM Symposium on Applied

Computing, Virtual Event Republic of Korea: ACM, Mar. 2021, pp. 1504–1512. doi:

10.1145/3412841.3442025.

[8] T. Lopes and S. Guerreiro, “Assessing business process models: a literature review on techniques for

BPMN testing and formal verification,” Bus. Process Manag. J., vol. 29, no. 8, pp. 133–162, Dec. 2023,

doi: 10.1108/BPMJ-11-2022-0557.

[9] P. Von Olberg and L. Strey, “Approach to Generating Functional Test Cases from BPMN Process

Diagrams,” in 2022 IEEE 30th International Requirements Engineering Conference Workshops (REW),

Melbourne, Australia: IEEE, Aug. 2022, pp. 185–189. doi: 10.1109/REW56159.2022.00042.

[10] A. Yazdani Seqerloo, M. J. Amiri, S. Parsa, and M. Koupaee, “Automatic test cases generation from

business process models,” Requir. Eng., vol. 24, no. 1, pp. 119–132, Mar. 2019, doi: 10.1007/s00766-

018-0304-3.

[11] J. L. De Moura, A. S. Charao, J. C. D. Lima, and B. De Oliveira Stein, “Test case generation from BPMN

models for automated testing of Web-based BPM applications,” in 2017 17th International Conference

on Computational Science and Its Applications (ICCSA), Trieste, Italy: IEEE, Jul. 2017, pp. 1–7. doi:

10.1109/ICCSA.2017.7999652.

https://github.com/camunda/bpmn-for-research

INTL. JOURNAL ON ICT VOL. 10, NO.2, DECEMBER 2024 213

[12] A. Paiva, N. Flores, J. Faria, and J. Marques, “End-to-end Automatic Business Process Validation,”

Procedia Comput. Sci., vol. 130, pp. 999–1004, Jan. 2018, doi: 10.1016/j.procs.2018.04.104.

[13] K. Schneid, L. Stapper, S. Thone, and H. Kuchen, “Automated Regression Tests: A No-Code Approach

for BPMN-based Process-Driven Applications,” in 2021 IEEE 25th International Enterprise Distributed

Object Computing Conference (EDOC), Gold Coast, Australia: IEEE, Oct. 2021, pp. 31–40. doi:

10.1109/EDOC52215.2021.00014.

[14] B. Boonmepipit and T. Suwannasart, “Test Case Generation from BPMN with DMN,” in Proceedings

of the 2019 3rd International Conference on Software and e-Business, Tokyo Japan: ACM, Dec. 2019,

pp. 92–96. doi: 10.1145/3374549.3374582.

[15] Object Management Group, “Business Process Model and Notation (BPMN), Version 2.0.” 2014.

[Online]. Available: https://www.omg.org/spec/BPMN

[16] J. Recker, “Opportunities and constraints: the current struggle with BPMN,” Bus. Process Manag. J.,

vol. 16, no. 1, pp. 181–201, Feb. 2010, doi: 10.1108/14637151011018001.

[17] C. Nonchot and T. Suwannasart, “A Tool for Generating Test Case from BPMN Diagram with a BPEL

Diagram,” Hong Kong, 2016.

[18] P. Pokharel and P. Vaidya, A Study of User Story in Practice. 2020, p. 5. doi:

10.1109/ICDABI51230.2020.9325670.

